EXHIBIT L. WATER QUALITY MONITORING REPORT LAKE WHATCOM NORTH SHORE ON-SITE SEWAGE SYSTEM LEACHATE DETECTION PROJECT (Herrera, July 10, 2017) And NORTH SHORE ON-SITE SEPTIC SYSTEM PHOSPHORUS LOADING ANALYSIS (Herrera, June 21, 2018)

WATER QUALITY MONITORING REPORT

LAKE WHATCOM NORTH SHORE ON-SITE SEWAGE SYSTEM LEACHATE DETECTION PROJECT

Prepared for Lake Whatcom Water & Sewer District

Prepared by Herrera Environmental Consultants, Inc.

WATER QUALITY MONITORING REPORT

LAKE WHATCOM NORTH SHORE ON-SITE SEWAGE SYSTEM LEACHATE DETECTION PROJECT

Prepared for Lake Whatcom Water & Sewer District 1220 Lakeway Drive Bellingham, Washington 98229

Prepared by Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206-441-9080

July 10, 2017

CONTENTS

Pref	face by Lake Whatcom Water & Sewer District	iii
Exe	cutive Summary	v
1.	Introduction	1
2.	Methods	3
3.	Results and Discussion	11
	3.1. Data Quality Review	11
	3.2. Field Parameters	13
	3.3. Chemistry	20
	3.4. Bacteria Indicators	21
	3.5. Bacteroidetes	
	3.6. Correlation Analysis	
4.	Conclusions	31
5.	References	33

APPENDICES

- Appendix A Photographic Documentation
- Appendix B Laboratory Data Reports
- Appendix C Sample Results Database

TABLES

Table 1.	Rainfall Amounts and Lake Levels for Sampling Events.	3
Table 2.	Sample Analyses Performed for Each Sampling Event.	7
Table 3.	Summary Statistics for Samples Collected.	12
Table 4.	Spearman Rank Order Correlation Coefficients for the Lake Whatcom North Shore Road OSS Detection Project.	27

FIGURES

Figure 1.	Sample Stations for the Lake Whatcom North Shore Road OSS Detection Project	5
Figure 2.	Water Temperature (°C) Along Lake Whatcom Shoreline Extending from Control Area	14
Figure 3.	Dissolved Oxygen (mg/L) Along Lake Whatcom Shoreline Extending from Control Area	15
Figure 4.	Conductivity (µS/cm) Along Lake Whatcom Shoreline Extending from Control Area.	16
Figure 5.	Continuous pH Along Lake Whatcom Shoreline Extending from Control Area	17
Figure 6.	Turbidity (FNU) Along Lake Whatcom Shoreline Extending from Control Area	18
Figure 7.	Optical Brightener (RFUB) Along Lake Whatcom Shoreline Extending from Control Area	19
Figure 8.	Fecal Bacteria Results (Fecal Coliform Concentration) Lake Whatcom North Shore OSS Detection	23
Figure 9.	Fecal Bacterial Results (Human Bacteroidetes DNA Concentration) Lake Whatcom North Shore OSS Detection	25
Figure 10.	Fecal Coliform Bacteria Versus Optical Brighteners	29
Figure 11.	Total Phosphorus Versus Optical Brighteners	30

LAKE WHATCOM WATER & SEWER DISTRICT

1220 Lakeway Drive Bellingham, WA, 98229 (360) 734-9224 Fax 738-8250

PREFACE

Lake Whatcom Water and Sewer District (District) was formed in the 1960's for the primary purpose of reducing pollution entering Lake Whatcom from individual onsite sewage septic systems in the urbanized and growing Sudden Valley and Geneva communities. The District's public sewer system now serves the equivalent of 4,308 single family residences located in the Lake Whatcom watershed. By means of a network of sewer mains and pump stations an average of 0.78 million gallons of wastewater is collected and sent to the City of Bellingham's wastewater treatment plant every day. For nearly 50-years the District has worked with the State of Washington and other local governments to protect and improve Lake Whatcom water quality, which is the drinking water source for a population of nearly 100,000 people. The District's mission statement has long included the protection of Lake Whatcom water quality.

In furtherance of the District's mission to protect lake water quality, the District commissioned this study to investigate potential impacts from onsite septic systems at the end of Northshore Road where there is currently no public sewer system. The District contracted with Herrera Environmental Consultants to test lake water quality over a period of time using various state of the art scientific methods along 2.5 miles of shoreline starting at Agate Bay and ending at Whatcom County's Lake Whatcom Park. On this stretch there are 97 existing homes with the potential for development of around 30 more. Wastewater from these lots could result in as much as 22,000 gallons per day (8 million gallons annually) that is treated and dispersed by individual onsite sewage septic system drain fields located close to the lakeshore.

The District was concerned that wastewater percolating through soils from individual drain fields near the lakeshore may be carrying fecal coliform, phosphorus, and other chemicals to ground water that flows into the lake. The results of this study give credence to these concerns. DNA testing of the water samples positively identified fecal coliform entering the lake came from not just animals but also humans. The study made no attempt to quantify or perform a loading analysis, but proves that human feces are entering Lake Whatcom from several sources along Northshore Road.

The results of this study may support extending public sewer and eliminating septic systems near the lake. The District plans to coordinate with various Whatcom County departments and Washington State Department of Ecology to review all potential solutions to this problem, including the potential for extending public sewer to the end of Northshore Road.

Lake Whatcom Water and Sewer District Board of Commissioners

EXECUTIVE SUMMARY

To protect the high quality water supply from Lake Whatcom, the Lake Whatcom Water and Sewer District investigated the area along approximately 2.3 miles of North Shore Road that includes approximately 97 homes currently served by on-site septic systems. A water quality monitoring study was developed to determine if septic systems along North Shore Road are contaminating Lake Whatcom, either by soil seepage or surfacing failure.

Herrera Environmental Consultants prepared a plan that considered various microbiological, chemical, biochemical, and molecular techniques for detecting septic system effluent in drainage from the study area and in the lake. The study design included monitoring of select field and laboratory parameters during three wet weather events in the winter of 2017, when septic system contamination would most likely be observed due to saturated soils and a high water table. Water quality monitoring was conducted in the lake near the shoreline and in discharges to the lake that drain only properties in the study area. Therefore, any discharge shown to be contaminated by septic system effluent is contaminating the lake from septic systems located within the study area.

The study was conducted, as planned, by boat during a large rain event on January 19 (2.20 inches in 48 hours), a moderate rain event on March 15 (0.87 inch in 48 hours), and a large rain event on March 29 (1.86 inches in 48 hours), 2017. The lake level rose 1.9 feet between January 19 and March 15, and another 0.7 foot by March 29, 2017.

For each rain event, field measurements were taken continuously in the lake and in all the observed surface water discharges to the lake, proceeding in a northwest direction along the shoreline from the control site (undeveloped forest) and then through the study area. Water samples were collected from select lake and surface water discharge locations where optical brighteners from laundry detergent were detected at greater than approximately 50 percent above the background measured at the lake control stations. During each event, a total of up to 18 samples were collected at lake control stations (undeveloped shoreline to southeast for background), lake impact stations (distant from drainage discharges in study area), discharge stations (draining only the study area), and one on-site sewage station (source confirmation). The samples were analyzed for microbiological parameters (fecal coliform bacteria and E. coli) for all three events, and for two different DNA biomarkers of human-specific fecal bacteria and chemistry parameters (total phosphorus, chloride, and bromide) for the second and third events only.

Study results showed that many septic systems in the study area are a likely source of contamination to Lake Whatcom. The DNA biomarkers of human-specific bacteria were found at moderate to high concentrations at 6 of the 13 sampled discharge stations and at 1 of the 4 sampled lake stations located along the 2.3-mile-long shoreline. At one discharge station,

human biomarker concentrations were high for both wet weather sampling events and were present at levels similar to those measured in septic tank samples.

Discharge and lake samples contaminated by human biomarkers from septic system effluent also contained elevated levels of optical brighteners, fecal coliform bacteria, and total phosphorus. The elevated concentrations of optical brighteners indicate the presence of laundry detergents from septic system effluent. Fecal coliform bacteria and total phosphorus concentrations in the contaminated samples exceeded Washington State surface water quality standards, indicating impacts on public health and the lake environment, respectively. Both fecal coliform bacteria and total phosphorus positively correlated with optical brighteners, providing additional evidence that septic systems are a significant source of the observed contamination.

Fecal coliform bacteria and total phosphorus concentrations were several orders of magnitude higher in septic tank samples than in lake samples, indicating that the lake was contaminated by diffuse seepage from septic system drain fields rather than overland flow from failed systems. The numerous and diffuse septic system sources present in the study area would be difficult to locate and control for protection of public health and the environment. Connecting homes in the study area to a sanitary sewer would prevent the ongoing contamination of Lake Whatcom from septic systems in the area.

1. INTRODUCTION

Lake Whatcom is the surface water supply for the Lake Whatcom Water and Sewer District (LWWSD) that currently serves a population of nearly 10,000 people from a water treatment plant located in Sudden Valley. Lake Whatcom is also the drinking water source for a number of residences that draw directly from the lake as well as the City of Bellingham, which serves a population of nearly 100,000.

The US Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology) determined that the water quality of Lake Whatcom has become polluted to the point where action must be taken. The Lake Whatcom Watershed Total Phosphorus and Bacteria TMDL (total maximum daily load) Water Quality Improvement Plan (Ecology 2016) addresses elevated amounts of fecal coliform bacteria and phosphorus, which causes excessive growth of algae and low dissolved oxygen levels. Sources contributing to the high phosphorus and bacteria levels may include failed on-site septic systems (OSS). The TMDL Water Quality Improvement Plan primarily relies on stormwater treatment to reduce phosphorus loadings to the lake, and only addresses OSS inputs through existing OSS regulations and permitting.

The City of Bellingham and Whatcom County each have a program to sample and analyze water quality of certain areas of Lake Whatcom and incoming streams. The LWWSD is a partner with the City of Bellingham and Whatcom County through inter-local agreements. However, there currently are no known efforts to sample and analyze the North Shore area of Lake Whatcom to investigate possible impacts from OSS leaching into the lake.

The LWWSD has concerns that OSS along the North Shore of Lake Whatcom may be contributing to phosphorus and fecal coliform bacteria pollution problems, as well as adding pharmaceutical and other manmade compounds to the lake. The leachate of OSS drain fields contain high levels of phosphorus and fecal bacteria. Leachate also contains man-made compounds found in most detergents called optical brighteners. These compounds may be detectible and useful as an indicator of leachate entering the lake.

The LWWSD evaluated OSS maintenance records showing recent OSS problems and a lack of regulatory compliance, and recommended conducting a water quality study to document impacts to Lake Whatcom by OSS in the North Shore Road area (Wilson 2015). Subsequent to a concentrated effort by the Whatcom County Health Department; 90 properties became current on their OSS inspections as of August 2016.

A water quality monitoring study was developed to determine if septic systems along North Shore are contaminating Lake Whatcom, either by soil seepage or surfacing failure. A quality assurance project plan (QAPP) was prepared that considered various microbiological, chemical, biochemical, and molecular techniques for detecting septic system effluent in drainage from the study area and in the lake (Herrera 2016). The study design included monitoring of select field

and laboratory parameters during three wet weather events in the winter of 2017, when septic system contamination would be most likely observed due to saturated soils and a high water table. Water quality monitoring was conducted in the lake near the shoreline and in discharges to the lake. All 20 discharges in the study area drained only properties in the study area. Thus, any discharge shown to be contaminated by septic system effluent is contaminating the lake from a septic system located within the study area.

This report is organized into the following sections:

- Methods
- Results and Discussion
- Conclusions

2. METHODS

Field and analytical methods used are discussed below. Additional information regarding project background, experimental design, and sampling methods can be found in the *Lake Whatcom North Shore OSS Quality Assurance Project Plan* (QAPP) (Herrera 2016).

Water quality monitoring was conducted from a motorized inflatable boat during three wet weather events that included continuous field measurements along the lake shore within a control site and the project site (Figure 1), and the collection of water samples from four different types of sample stations:

- 1. **Lake Control Station**: Lake water adjacent to an undeveloped lake shoreline located southeast of the project site in the control site
- 2. **Lake Impact Station**: Lake water adjacent to the lake shoreline in the project site that is distant from and not directly affected by discharge of local drainages
- 3. **Discharge Station**: Drainage water discharging to the lake from local pipes and ditches in the project site
- 4. **OSS Station**: OSS source water collected from one septic tank located in the project site

The wet weather events analyzed 48-hour rainfall totals (for sampling date and previous day) with 2.20 inches of rainfall on January 19 (Event 1), 0.87 inches on March 15 (Event 2), and 1.86 inches on March 29 (Event 3), 2017, as shown in Table 1. These rainfall amounts are for a rain gauge located at a lake shore residence in the project site and are slightly higher than those measured at a nearby rain gauge operated by the City of Bellingham. Thus, samples were collected during two large storm events (Events 1 and 3) and one moderate storm event (Event 2). The QAPP objective of sampling after a minimum of 0.5 inches of rain in 24 hours was not quite met for Event 2.

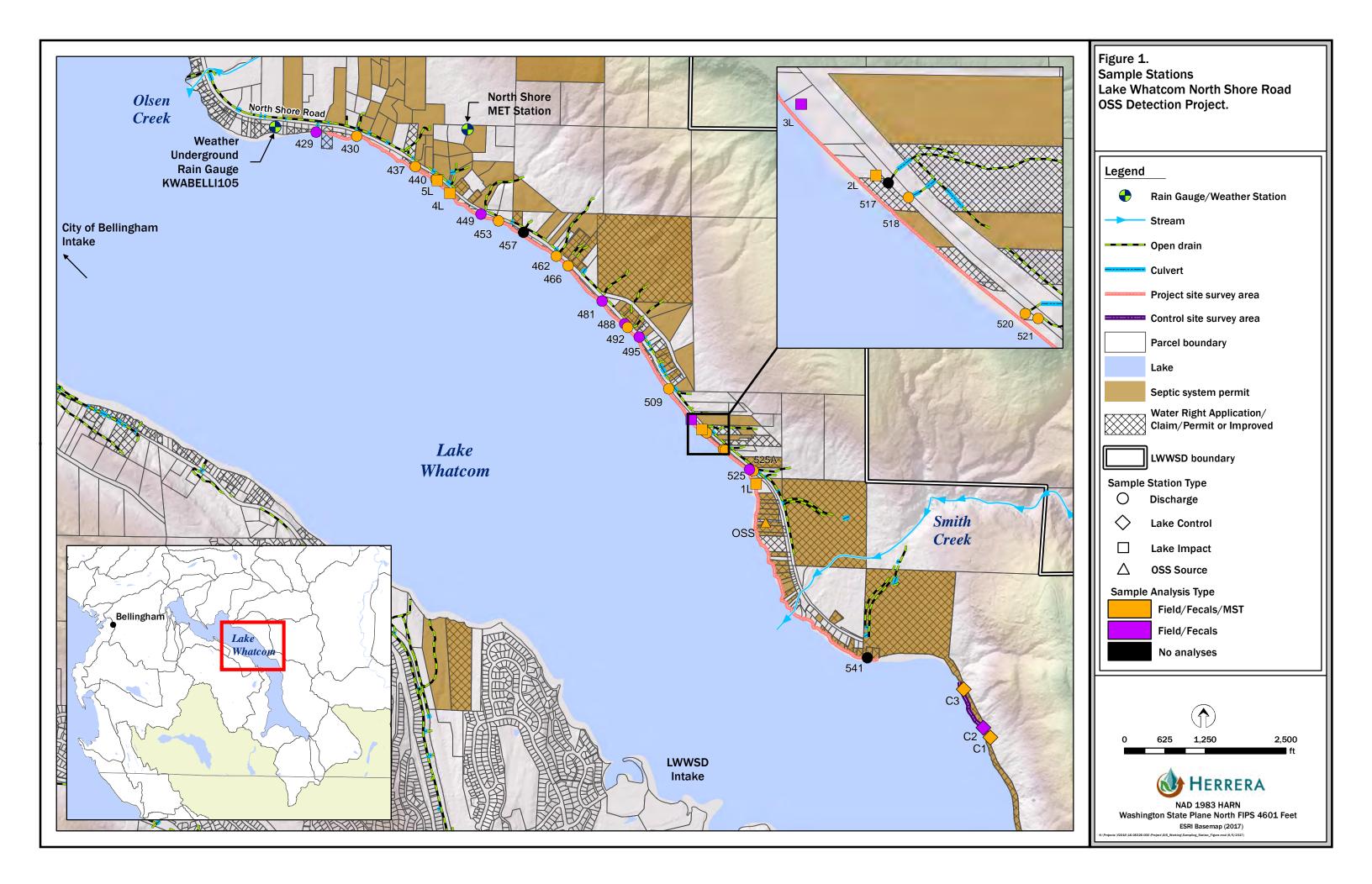
Table 1. Rainfall Amounts and Lake Levels for Sampling Events.										
	Sampling Event 1 1/19/2017	Sampling Event 2 3/15/2017	Sampling Event 3 3/29/2017							
City 24-hour rainfall previous day (inches) ^a	0.98	0.33	0.59							
City 24-hour rainfall sampling day (inches) ^a	1.05	0.42	1.10							
City Total 48-hour rainfall (inches) ^a	2.03	0.75	1.69							
Lake Shore 48-hour rainfall (inches) ^b	2.20	0.87	1.86							
Daily Average Lake Elevation (feet MSL)	312.0	313.9	314.6							

^a Rainfall data from the City of Bellingham's North Shore MET rain gage.

July 2017

^b Rainfall data from Weather Underground station SWABELL105 located at a lake shore residence in the project site.

The lake level rose 1.9 feet between sampling on January 19 (Event 1) and March 15 (Event 2), and another 0.7 feet on March 29 (Event 3) (see Table 1). The shallow water table adjacent to the lake likely rose a similar amount and may have increased the potential for OSS contamination of the lake with each event.


For each event, field measurements were measured continuously in the lake and all of the observed surface water discharges to the lake, proceeding in a northwest direction along the shoreline from the control site (undeveloped forest) and then through the project site (see Figure 1). Photographic documentation is included in Appendix A.

A calibrated YSI ProDSS multimeter was used to measure and log positon, temperature, dissolved oxygen (DO), pH, and conductivity. A Turner Cyclops-7 fluorometer, configured at a wavelength for optical brighteners (OB) and calibrated for a low detection limit (0.6 μ g/L), was used to log data in relative fluorescence units (RFU). The meter probes were zip tied together and deployed at a depth of about 6 inches in the lake while the boat was slowly maneuvered as close to shore as possible; the boat was typically beached for deployment of the probes directly in discharges.

The OB fluorometer method has the advantage of detecting human wastewater inputs in realtime and by logging data continuously, which is particularly useful for pinpointing OSS inputs. However, other studies have reported no correlation between fluorometer and fecal coliform bacteria results. High concentrations of naturally-produced humic acids and contamination by petroleum hydrocarbons may interfere with OB analyses, but those interferences are not expected to be a substantial in Lake Whatcom. The Cyclops 7 probe with the DataBank display/logger, stainless steel sensor, and 5 meter cable was recommended for this OSS detection study because of its high sensitivity, low detection limit, low interference, and ease of use for measuring OB concentrations at an unlimited number of locations along the lake shore (Herrera 2016).

Water samples were collected from select lake and surface water discharge locations exhibiting fluorescence greater than approximately 50 percent above background measured at the lake control stations. During each event, a total of up to 18 samples were collected from up to 3 lake control stations, 3 lake impact stations, 14 discharge stations, and 1 on-site sewage (OSS) station (see Figure 1). All of the lake impact stations were located beyond the influence of a discharge and represent impacts from groundwater seepage or other non-point sources. Nearly all of the 20 discharges located along the 2.3 mile shoreline exceeded the fluorescence criterion for sampling and some discharges were not sampled because they were not observed or had previously exhibited low fecal coliform concentrations. Table 2 summarizes the sample analyses performed for each event.

		Sample Analyses					
Station ID	Station Description	Event 1	Event 2	Event 3			
Lake Control			-				
C1	Next to undeveloped shoreline SE of site	F, B	F, B, L	F, B, L			
C2	Next to undeveloped shoreline SE of site	F, B	-	_			
C3	Next to undeveloped shoreline SE of site	F, B	F, B, L	F, B			
Lake Impact			÷				
1L	Next to shoreline S of Discharge 525	_	-	F, B, L			
2L	Next to shoreline at Discharge 517	_	F, B, L	_			
3L	Next to shoreline NW of Discharge 517	F, B	-	-			
4L	Next to shoreline SE of Discharge 440	_	F, B, L	-			
5L	Next to shoreline at Discharge 440	_	F, B, L	_			
Discharge							
429	8-inch corrugated HDPE	_	-	F, B			
430	Twin 12- and 8-inch corrugated HDPE	F ^a , B	F, B, L	F, B, L			
437	Open channel	F ^a , B	F, B, L	F, B, L			
440	Open channel	F ^a , B	-	F, B, L			
449	Open channel	F ^a , B	F, B	F, B, L			
453	24-inch corrugated HDPE	_	F, B	F, B, L			
462	36-inch corrugated HDPE	F ^a , B	F, B, L	F, B, L			
466	36-inch concrete	F ^a , B	F, B, L	F, B, L			
481	36-inch concrete	F, B	F	F			
488	36-inch corrugated HDPE	F, B	F	F			
492	Open channel	F, B	F, B, L	F, B			
495	36-inch concrete	F, B	F	_			
509	36-inch concrete	F, B	F, B	F, B, L			
518	36-inch concrete	_	F, B, L	F, B, L			
520	Open channel	_	F, B, L	F, B, L			
521	36-inch concrete	F, B	F	F, B, L			
525	24-inch concrete	_	F, B, L	F, B, L			
525A	Open channel	F, B	-	_			
Septic Tank							
OSS	3201 North_ <mark>sS</mark> hore Road	_	F, B, L	F, B, L			

^a Optical brighteners not measured with field parameters due to fluorometer malfunction.

F = Field parameters (temperature, dissolved oxygen, pH, conductivity, turbidity, optical brighteners).

B = Bacteria parameters (fecal coliform bacteria and E. coli).

July 2017

L = Laboratory analysis of chemistry (total phosphorus, chloride, and bromide) and Bacteroidetes (B. dorei and EPA developed assay).

Water samples were collected by pumping water with a peristaltic pump from 0.25-inch tubing attached to the instrument probe assembly. New tubing was used for each event and purged for several minutes prior to the collection of each sample. Sterile technique was employed, the

control samples were collected first, and the OSS sample was collected last. Sample containers provided by the laboratories were filled as designed for the following laboratory analyses:

- Microbiological: fecal coliform bacteria and *E. coli* by LabCor, Inc. using Standard Method 9222D (membrane filtration).
- Chemistry: total phosphorus, chloride, and bromide by Analytical Resources, Inc. using Standard Method 4500-P E (persulfate/ascorbic acid) and EPA Method 300.0 (ion chromatography).
- Microbial Source Tracking (MST): Bacteroidetes human gene biomarkers 1 (*B. dorei*) and 2 (EPA developed assay) by Source Molecular Corporation using digital quantitative polymerase chain reaction (digital qPCR).

Analysis of water samples for fecal coliform bacteria was recommended for this OSS detection study to assess potential effects of OSS on fecal coliform bacteria loading to Lake Whatcom and assist with TMDL implementation. Although fecal coliform bacteria concentrations in the lake may not be directly related to OSS inputs, due to an abundance of non-human fecal sources, unusually high concentrations may be used as one line of evidence for OSS impacts to human health.

Total dissolved phosphorus analysis of water samples was originally recommended for this OSS study because of the importance of phosphorus loading from OSS to the lake, and because measuring only dissolved fractions of phosphorus would reduce variation in concentrations of total phosphorus caused by wave suspension of near shore sediment (Herrera 2016). However, total phosphorus was analyzed because it directly relates to the TMDL (Ecology 2016) and ongoing monitoring at Lake Whatcom. In addition, suspension of lake sediment along the shoreline appeared to be minor and analysis of only soluble phosphorus would have excluded phosphorus from OSS contamination that had precipitated or adsorbed to particles in discharge waters.

Chloride and bromide analyses were recommended for this OSS study as an additional indicator of possible OSS contamination of the lake. Chloride concentrations are elevated in sewage due to large amounts of salt in human waste and chloride moves conservatively (no adsorption or degradation) in ground and surface waters. Chloride (Cl) to bromide (Br) ratios have been used successfully to detect OSS contamination of ground waters because this ratio accounts for natural variation of these constituents in the salt content of rainfall and groundwater. The USGS (Katz et al. 2011) conducted a nationwide study of 1,848 wells and found that the Cl/Br ratio was useful as a screening tool for identifying potential impacts of OSS on shallow wells. However, bromide analysis may not be necessary because background salt concentrations are not likely to vary in the lake or shallow groundwater within the study area.

The *B. dorei* and EPA Developed Assay methods are designed around the principle that fecal Bacteroidales-like bacteria are found in large quantities in feces of warm-blooded animals. Furthermore, certain strains have been shown to be associated only with humans. False positives from non-human sources have never been observed for the *B. dorei* method and have been

🛞 HERRERA

observed only on rare occasions for the EPA method (Source Molecular, personal communication). As such, these bacterial strains can be used as indicators of human fecal contamination. MST results were weighted based on the following criteria with respect to the extent of human fecal contamination (Cao et. al. 2013):

- The frequency of samples that are positive for human MST markers was of primary importance
- The magnitude of and consistency between human-associated markers was of secondary importance
- General fecal indicator bacteria received the least weight.

For each event, all 17 or 18 samples were analyzed for the microbiological parameters and results were reported within 48 hours. For Events 2 and 3, 15 of the lake control and other samples exhibiting elevated fecal coliform concentrations were analyzed for the chemistry and MST parameters.

3. RESULTS AND DISCUSSION

Summary statistics for samples are presented in Table 3. Laboratory reports and data quality review worksheets and are presented in Appendix B. The sample results database is included in Appendix C.

Data quality review results are summarized first in this section. Monitoring results are then presented and discussed separately for field parameters (temperature, DO, pH, conductivity, and OB), chemistry (total phosphorus, chloride, and bromide), bacteria (fecal coliform and *E. coli*), and Bacteroidetes. This section concludes with results and discussion of the correlation analysis performed on the collected data.

3.1. DATA QUALITY REVIEW

Field and laboratory procedures followed the project QAPP (Herrera 2016) with the following exceptions:

- Optical brightener data are missing for approximately half of the site during Event 1 due to water damage to the fluorometer.
- Chemistry analyses were performed by Analytical Resources, Inc. instead of the Institute for Environmental Health that was specified in the QAPP.
- Total phosphorus was analyzed instead of total dissolved phosphorus.
- Reported laboratory detection limits for total phosphorus (0.008 milligrams per liter [mg/L]) and bromide (0.100 mg/L) were slightly elevated from the QAPP objectives (0.005 mg/L and 0.05 mg/L, respectively).

All continuous field parameter data were reviewed to remove data logged while probes were out of the water. Identified data were deleted from the database

Laboratory data were verified and validated to ensure that all data were consistent, correct, and complete, and that all required quality control information was provided. Values associated with minor quality control problems were considered estimates and assigned *J* qualifiers. Estimated values were used for evaluation purposes. The following laboratory quality control elements were reviewed for each sampling event:

- Completeness
- Methodology

Table 3. Summary Statistics for Samples Collected.												
	Discharge Stations			Lake Impact Stations			Lake Control Stations			OSS Station		
Parameter	Min.	Max.	Median	Min.	Max.	Median	Min.	Max.	Median	Min.	Max.	Median
Temperature (°C)	5.2	8.9	7.4	6.8	7.7	7.2	6.3	6.7	6.7	7.8	9.1	8.5
Dissolved oxygen (mg/L)	10.5	12.2	11.7	11.1	11.7	11.3	10.4	11.8	11.4	0.30	0.61	0.46
pH (std. units)	6.3	7.4	7.1	6.9	7.4	7.1	7.2	7.5	7.3	6.9	7.0	6.9
Conductivity (µS/cm)	0.2	115.6	59.0	56.6	64.8	60.9	50.7	58.1	57.3	944	963	660
Turbidity (FNU)	0.9	67.2	8.2	0.4	3.0	1.7	0.2	0.6	0.3	26.8	32.3	29.6
Optical brighteners (RFUB)	51.0	297	189	61.7	227.7	81.2	8.2	45.5	43.4	632	686	660
Total phosphorus (mg/L)	0.014	0.218	0.054	0.012	0.030	0.021	<0.008	<0.008	<0.008	10.2	10.3	10.3
Chloride (mg/L)	1.15	3.47	2.08	2.56	3.05	2.61	2.59	2.68	2.68	46.8	48.1	47.5
Bromide (mg/L)	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.001
Fecal coliform (CFU/100 mL)	2	800	36/ 192 ª	<5	46	10/31ª	<2	<5	3/5ª	1,500,000	4,080,000	2,470,000/ 3,820,000ª
<i>E. coli</i> (CFU/100 mL)	2	342	28/ 156 ª	<5	42	10/29 ^a	<2	<5	3/5ª	1,500,000	4,080,000	2,470,000/ 3,820,000 ^a
Fecal coliform/ <i>E. coli</i> ratio	0.1	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
B. dorei (copies/100 mL)	0	21,700	8.4 ^b	0	60	3.7 ^b	0	<3	1.4 ^b	1,030	1,460	1,230 ^b
B. EPA (copies/100 mL)	0	9,960	4.6 ^b	0	0	0	0	0	0	55,000	141,000	88,100 ^b

^a Geometric mean/90th percentile calculated for coliform bacteria.

^b Geometric mean calculated for Bacteroidetes DNA.

Bold values exceed following surface water standards (WAC 173-201A): Temperature >16°C, DO <9.5 mg/L, pH <6.5, >8.5, Total phosphorus >0.020 mg/L, Bacteria geometric mean >0 cfu/100 mL or 90th percentile >100 cfu/100 mL.

°C = degrees Celsius

mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter

FNU = formazin nephelometric units

RFUB = relative fluorescence units, blank corrected

CFU/100 mL = colony forming units per 100 milliliters; Copies/100 mL = copies per 100 milliliters

< = not detected above the associated reporting limit

- Holding times
- Blanks
- Control Standards
- Matrix spikes
- Laboratory duplicates
- Fecal coliform bacteria enumeration

Based on the data validation, all reported results were considered acceptable for use as reported with the following exceptions:

- Several fecal coliform bacteria and *E. coli* results were qualified as estimated due to plate counts outside the ideal range of 20 to 60.
- The total phosphorus result for the sample collected from Station 4L during the second event was qualified as estimated (flagged *J*) due to method blank contamination.

3.2. FIELD PARAMETERS

Sample summary statistics for temperature, DO, pH, conductivity, and OB are presented in Table 3. Continuous field parameter data are presented on Figures 2 through 7.

As shown on Figure 2, continuous temperature measurements for Events 2 and 3 indicate a general increase in lake temperature along the shoreline moving away (northwest) from the control site, and the discharge points exhibited higher water temperature than the lake. For Event 1, however, temperature was generally consistent along the lake shoreline and discharge water temperatures were lower than the lake. This was due to snow and ice being present in the area during sampling for Event 1 in January. Temperature measurements ranged from 5.2 to 8.9 degrees Celsius (°C) at the discharge stations, 6.8 to 7.7°C at the lake impact stations, 6.3 to 6.7°C at the lake control stations, and 7.8 to 9.1°C at the OSS station (Table 3). Thus, the OSS samples were only a couple of degrees warmer than the lake and discharge waters. All temperature measurements met the surface water standard of less than 16°C (WAC 173-201A).

DO levels in the lake increased with each of the sampling events (Figure 3), likely due to increasing algae productivity. DO levels also slightly increased with distance along the shoreline from the control area for all three events. The DO results ranged from 10.5 to 12.2 mg/L at the discharge stations, 11.1 to 11.7 mg/L at the lake impact stations, 10.4 to 11.8 mg/L at the lake control stations, and 0.3 to 0.6 mg/L at the OSS station (Table 3). The lake and discharge samples were essentially saturated with oxygen, while essentially no oxygen was present in the OSS samples.

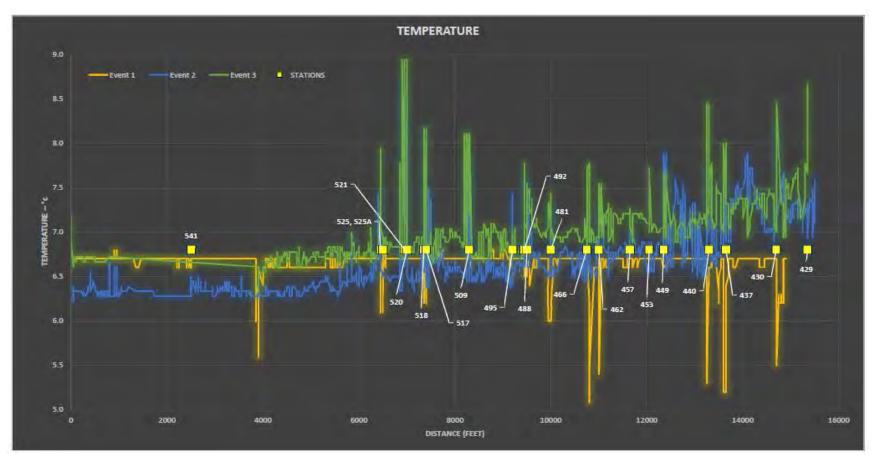


Figure 2. Water Temperature (°C) Along Lake Whatcom Shoreline Extending from Control Area.

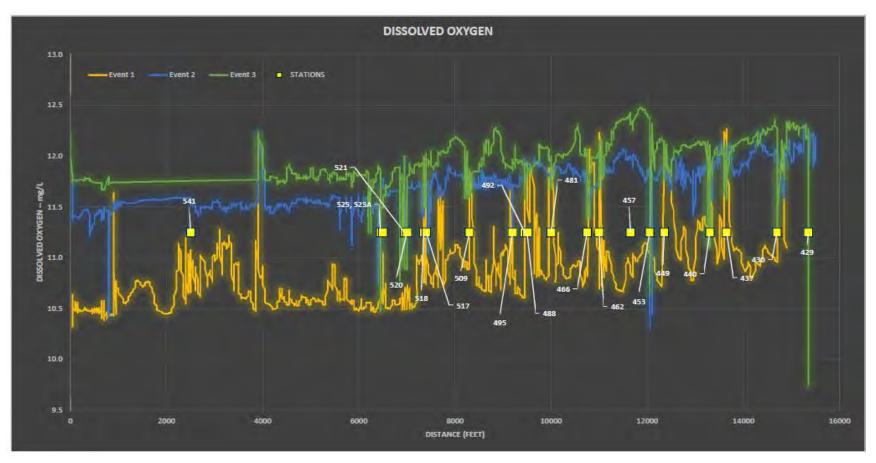


Figure 3. Dissolved Oxygen (mg/L) Along Lake Whatcom Shoreline Extending from Control Area.

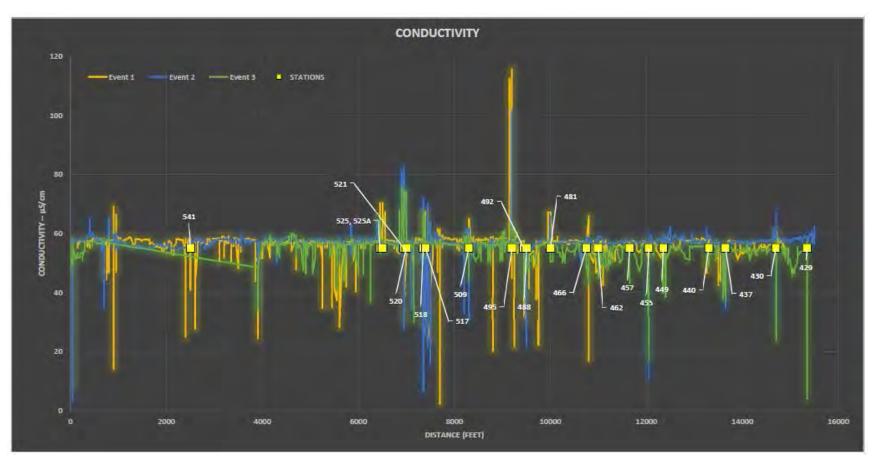


Figure 4. Conductivity (µS/cm) Along Lake Whatcom Shoreline Extending from Control Area.

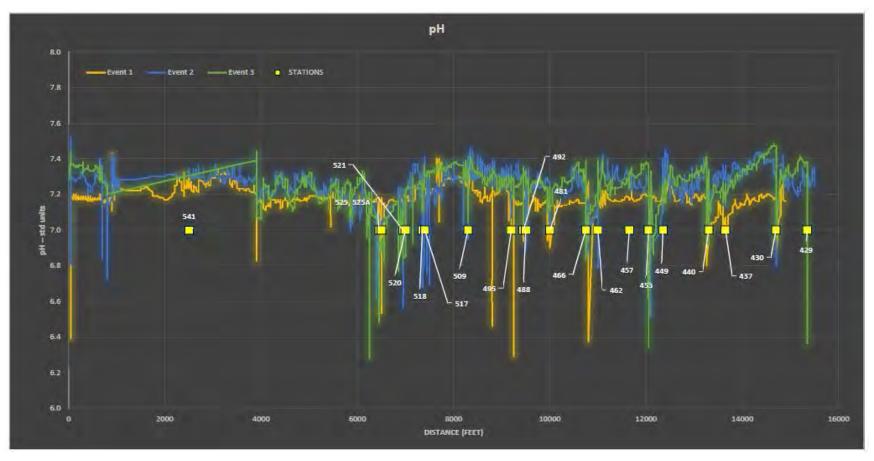


Figure 5. Continuous pH Along Lake Whatcom Shoreline Extending from Control Area.

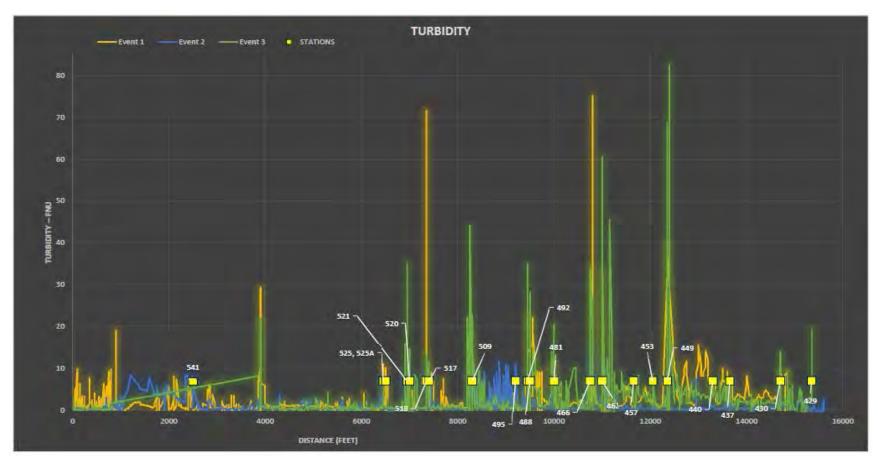


Figure 6. Turbidity (FNU) Along Lake Whatcom Shoreline Extending from Control Area.

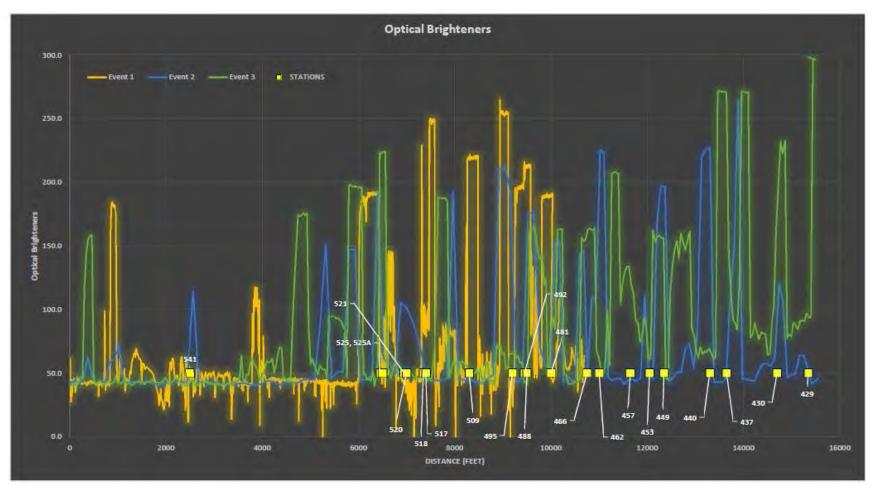


Figure 7. Optical Brightener (RFUB) Along Lake Whatcom Shoreline Extending from Control Area.

In general, conductivity was similar between all three sampling events and remained consistent in the lake with distance along the shoreline (Figure 4). Conductivity often decreased briefly in the lake at and between discharges, while some discharges exhibited high conductivity compared to the lake. As shown in Table 3, conductivity ranged from 0.2 to 115.6 microsiemens per centimeter (μ S/cm) at the discharge stations, 56.6 to 64.8 μ S/cm at the lake impact stations, 50.7 to 58.1 μ S/cm at the lake control stations, and 944 to 963 μ S/cm at the OSS stations. Discharge station 429 had the unusually low conductivity value of 0.2 μ S/cm. The median conductivity was approximately 11 times higher in the OSS samples than the lake impact or discharge samples.

Continuous pH measurements were generally consistent with distance along the shoreline from the control area for all three events (Figure 5). The pH of discharge water was lower than the lake water at all discharge points for all three events. The pH results ranged from 6.3 to 7.4 at the discharge stations, 6.9 to 7.4 at the lake impact stations, 7.2 to 7.5 at the lake control stations, and 6.9 to 7.0 at the OSS station. The low pH results at discharge sample locations 429 (6.27) and 453 (6.43) during the third sampling event did not meet the surface water standard of greater than 6.5 and less than 8.5.

Continuous turbidity was consistently low in the lake except in the vicinity of some turbid discharges (Figure 6). Turbidity results ranged from 0.9 to 67 formazin nephelometric units (FNU) at the discharge stations, 0.4 to 3.0 FNU at the lake impact stations, 0.2 to 0.6 FNU at the lake control stations, and 27 to 32 FNU at the OSS station.

OB values in the lake frequently increased from baseline either in the vicinity of or distant from discharges, and slightly increased with distance along the shoreline from the control area for Event 3 (Figure 7). The OB values ranged from 51 to 297 relative fluorescence units—blank corrected (RFUB) at the discharge stations, 62 to 228 RFUB at the lake impact stations, 8.2 to 46 RFUB at the lake control stations, and 632 to 686 RFUB at the OSS station. Median OB values increased from the lake control stations (43 RFUB) by a factor of 2 at the lake impact stations (81 RFUB), a factor of 4 at the discharge stations (189 RFUB), and a factor of 15 at the OSS station (660 RFUB).

3.3. CHEMISTRY

Sample summary statistics for total phosphorus, chloride, and bromide are presented in Table 3. Results for all sample locations are presented in Appendix C.

Total phosphorus was not detected above the laboratory reporting limit (0.008 mg/L) in any of the lake control samples. Median total phosphorus concentrations increased from the lake impact stations (0.021 mg/L), to the discharge stations (0.054 mg/L), and to a very high concentration at the OSS station (10.3 mg/L). High concentrations, defined as exceeding the Washington State action value of 0.020 mg/L for Puget Sound lowland lakes (WAC 173-201A), were observed at 12 of the 13 discharge stations and at 2 of the 4 lake impact stations.

The median chloride concentration was similar for lake impact stations (2.61 mg/L) and lake control station (2.68 mg/L), and slightly lower for the discharge stations (2.08 mg/L). The median chloride concentration at the OSS station (47.5 mg/L) was 18 times higher than the lake stations.

Bromide was not detected above the reporting limit in any sample. Therefore, chloride/bromide ratios were not calculated.

3.4. BACTERIA INDICATORS

Sample summary statistics for fecal coliform and *E. coli* are presented in Table 3. Results for all sample locations are presented in Appendix C.

Geometric mean concentrations of fecal coliform bacteria increased from the lake control stations (<3 CFU/100 mL), to the lake impact stations (10 CFU/100 mL), to the discharge stations (36 CFU/100 mL), and to a very high concentration at the OSS station (2.5 million CFU/100 mL) (see Table 2).

Fecal coliform bacteria results are summarized for each station location in Figure 8. High concentrations, defined as exceeding the Washington State surface water standard of 100 CFU/100 mL for a single sample, were observed on one or more occasion at eight discharge stations and no lake stations. Thus, primary contact recreation in the vicinity of these discharges should be avoided to protect public health. Furthermore, consumption of untreated lake waters containing any detectable concentrations of fecal coliform bacteria should be avoided to protect public health.

Fecal coliform bacteria concentrations were typically equivalent to E. coli concentrations, suggesting that the samples did not include many positive testing organisms that are not of fecal origin. Considering the high levels observed at the OSS station and that fecal coliform concentrations commonly exceed 1,000 CFU/100 mL in stormwater runoff (e.g., event mean concentration of 7,750 most probable number [MPN]/100 mL for stormwater draining residential development; Shaver et al. 2007), none of the observed lake or discharge results exhibited high enough fecal coliform bacteria concentrations to strongly indicate contamination from septic system effluent.

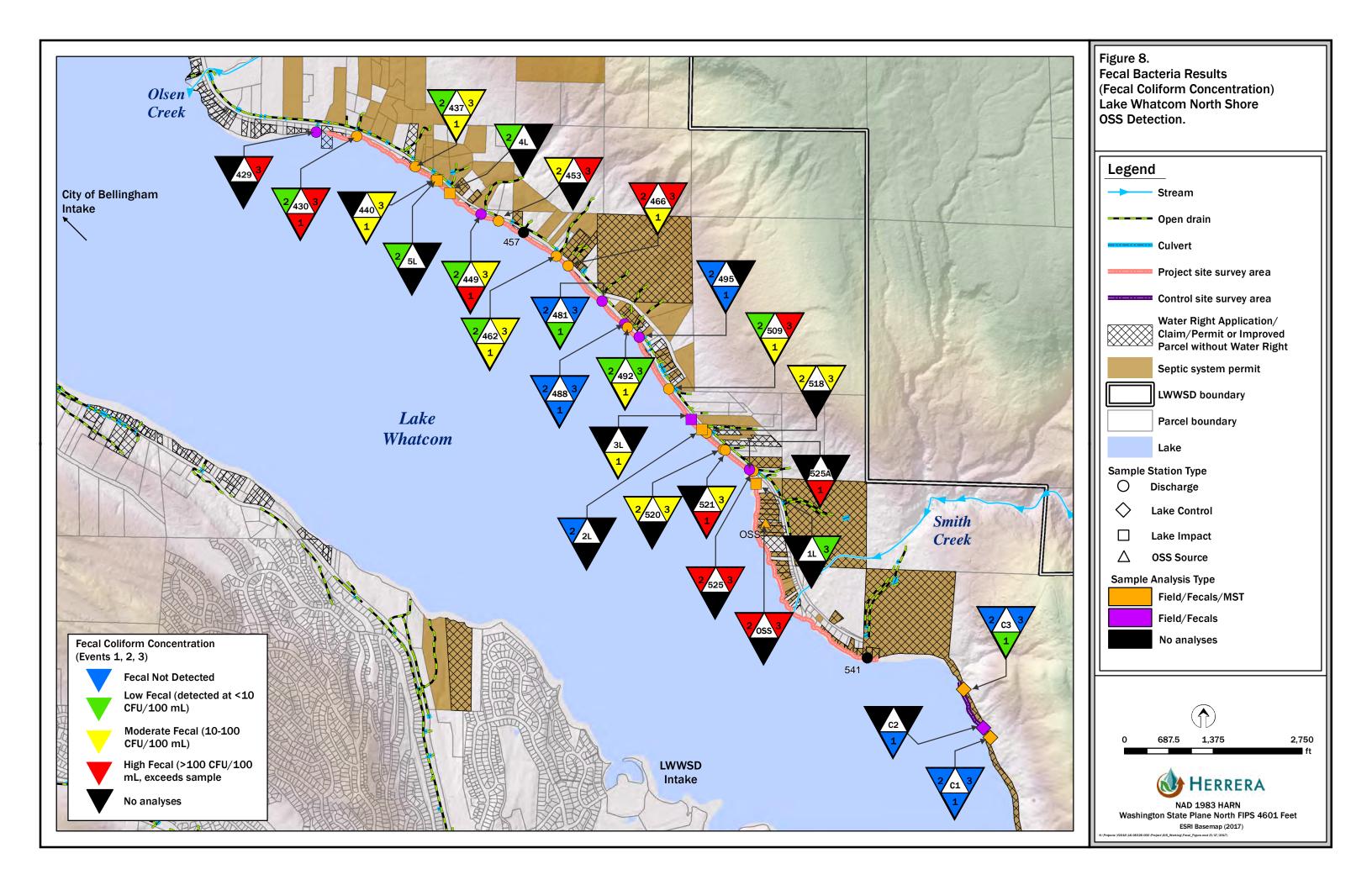
3.5. BACTEROIDETES

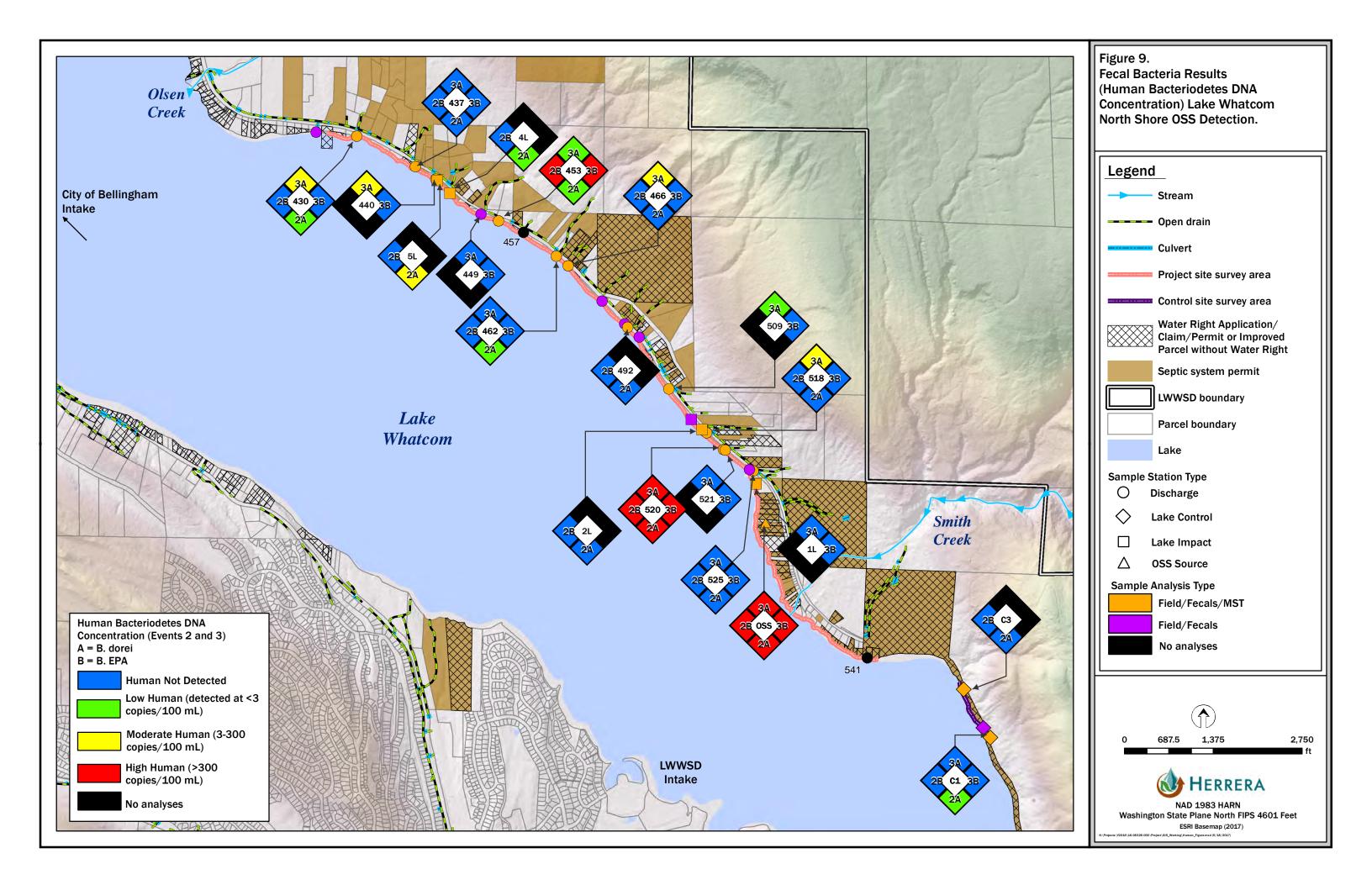
July 2017

Geometric mean concentrations of Bacteroidetes human biomarkers (including both *B. dorei* and EPA methods) did not exceed the limit of quantitation at the lake control and impact stations (<3 copies/100 mL for both methods), increased at the discharge stations (8.4 and 4.6 copies/100 mL, respectively), and were much higher at the OSS station (1,230 and 88,100 copies/100 mL, respectively) (see Table 3).

Bacteroidetes human biomarker results are summarized for each station in Figure 9. High concentrations, defined as greater than 100 times the quantitation limit of 3 copies/100 mL, were observed on one or more occasion at two discharge locations and no lake locations.

Moderate concentrations (3 to 300 copies/100 mL) were observed at four discharge stations and one lake station (located near a discharge with a moderate concentration). Moderate to high concentrations of human biomarkers are considered proof that the samples were contaminated by septic system effluent. False positives from non-human sources have never been observed for the *B. dorei* method and have been observed only on rare occasions for the EPA method (Source Molecular personal communication). Thus, septic system contamination was definitely observed at seven locations in the 2.3-mile study area.


Discharge 520 (see Figure 9) exhibited the most conclusive evidence of septic system contamination because both samples collected at this discharge contained high concentrations of both biomarkers that were similar to concentrations observed in the OSS sample. Interestingly, fecal coliform bacteria concentrations were not exceptionally high (62 and 100 CFU/100 mL) in either sample from Discharge 520. Higher fecal coliform bacteria concentrations would be expected if this discharge was contaminated by a septic system that was undergoing a surfacing failure and draining directly into the discharge drainage. The moderate to high concentrations of human Bacteroidetes DNA without exceptionally high fecal coliform bacteria concentrations at this and the other sampled stations suggest that those drainage and lake waters were contaminated by seepage of septic system effluent through soils, which may have retained fecal coliform bacteria cells and passed Bacteroidetes DNA.


3.6. CORRELATION ANALYSIS

Non-parametric correlation analysis (Spearman's rho) was performed on the results to determine which monitoring parameters were good predictors of fecal and phosphorus contamination. The lake and discharge sample data were tested both separately and combined for significant parameter correlations. Results of this analysis are presented in Table 4.

None of the field, chemical, or microbiological parameters analyzed for this study were good predictors of human fecal contamination in the lake or discharge samples. Neither human biomarker correlated to fecal coliform or *E. coli*, suggesting that fecal coliform bacteria also originate from animals and are not good indicators of human fecal contamination within the project area. The two human biomarkers were significantly ($\alpha = 0.05$) correlated with each other among the discharge samples, but not strongly (rho = 0.46). Significant but rather weak correlations (rho < 0.6) were observed in the discharge samples for *B. dorei* with temperature (positive) and for the EPA method with dissolved oxygen (negative), pH (negative), and chloride (positive).

	Temp.	DO	pH (std.	Sp. Cond	ОВ	Total P	Chloride	Fecal coliform	E. coli	B. dorei	B. EPA	B. dorei+B. EPA
Variable	(°C)	(mg/L)	units)	(uS/cm)	(RFUB)	(mg/L)	(mg/L)	(CFU/100mL)	(CFU/100mL)	(copies/100mL)	(copies/100mL)	(copies/100 ml)
All Sites except OSS												
Temperature (°C)	1.00	-0.31	0.00	-0.03	0.41	0.70	-0.29	0.12	0.09	0.50	0.19	0.43
Dissolved Oxygen (mg/L)	-0.31	1.00	0.37	-0.30	0.26	0.10	-0.45	-0.04	-0.05	-0.20	-0.51	-0.32
pH (standard units)	0.00	0.37	1.00	-0.14	-0.16	-0.14	-0.18	-0.52	-0.55	-0.12	-0.47	-0.25
Specific Conductance (uS/cm)	-0.03	-0.30	-0.14	1.00	0.02	-0.15	0.62	0.12	0.06	0.28	0.25	0.26
Optical Brighteners (RFUB)	0.41	0.26	-0.16	0.02	1.00	0.70	-0.53	0.38	0.38	0.30	-0.05	0.23
Total Phosphorus (mg/L)	0.70	0.10	-0.14	-0.15	0.70	1.00	-0.59	0.61	0.57	0.36	0.05	0.30
Chloride (mg/L)	-0.29	-0.45	-0.18	0.62	-0.53	-0.59	1.00	-0.20	-0.29	0.22	0.42	0.27
Fecal coliform (CFU/100mL)	0.12	-0.04	-0.52	0.12	0.38	0.61	-0.20	1.00	0.97	0.31	0.31	0.35
E. coli (CFU/100mL)	0.09	-0.05	-0.55	0.06	0.38	0.57	-0.29	0.97	1.00	0.17	0.18	0.22
B. dorei (copies/100mL)	0.50	-0.20	-0.12	0.28	0.30	0.36	0.22	0.31	0.17	1.00	0.43	0.96
B. EPA (copies/100mL)	0.19	-0.51	-0.47	0.25	-0.05	0.05	0.42	0.31	0.18	0.43	1.00	0.64
B. dorei + B. EPA (copies/100 ml)	0.43	-0.32	-0.25	0.26	0.23	0.30	0.27	0.35	0.22	0.96	0.64	1.00
Discharge Sites Only												
Temperature (°C)	1.00	-0.48	0.15	-0.07	0.19	0.46	-0.14	0.06	-0.01	0.54	0.10	0.41
Dissolved Oxygen (mg/L)	-0.48	1.00	0.51	-0.37	0.15	0.20	-0.53	-0.29	-0.31	-0.22	-0.53	-0.36
pH (standard units)	0.15	0.51	1.00	-0.12	0.16	0.18	-0.43	-0.48	-0.53	-0.05	-0.49	-0.22
Specific Conductance (uS/cm)	-0.07	-0.37	-0.12	1.00	-0.08	-0.24	0.72	0.06	-0.03	0.36	0.31	0.35
Optical Brighteners (RFUB)	0.19	0.15	0.16	-0.08	1.00	0.47	-0.58	-0.04	-0.05	0.16	-0.28	0.02
Total Phosphorus (mg/L)	0.46	0.20	0.18	-0.24	0.47	1.00	-0.53	0.31	0.27	0.34	-0.14	0.21
Chloride (mg/L)	-0.14	-0.53	-0.43	0.72	-0.58	-0.53	1.00	0.13	0.00	0.25	0.55	0.36
Fecal coliform (CFU/100mL)	0.06	-0.29	-0.48	0.06	-0.04	0.31	0.13	1.00	0.94	0.32	0.20	0.33
E. coli (CFU/100mL)	-0.01	-0.31	-0.53	-0.03	-0.05	0.27	0.00	0.94	1.00	0.11	0.06	0.13
B. dorei (copies/100mL)	0.54	-0.22	-0.05	0.36	0.16	0.34	0.25	0.32	0.11	1.00	0.46	0.94
B. EPA (copies/100mL)	0.10	-0.53	-0.49	0.31	-0.28	-0.14	0.55	0.20	0.06	0.46	1.00	0.71
B. dorei + B. EPA (copies/100 ml)	0.41	-0.36	-0.22	0.35	0.02	0.21	0.36	0.33	0.13	0.94	0.71	1.00
Lake Sites Only												
Temperature (°C)	1.00	-0.14	-0.83	0.56	0.74	0.96	0.03	0.49	0.49	0.43	0.00	0.43
Dissolved Oxygen (mg/L)	-0.14	1.00	0.45	-0.06	0.19	-0.48	-0.05	0.11	0.11	0.00	0.00	0.00
pH (standard units)	-0.83	0.45	1.00	-0.25	-0.46	-0.67	0.36	-0.29	-0.29	0.09	0.00	0.09
Specific Conductance (uS/cm)	0.56	-0.06	-0.25	1.00	0.71	0.63	0.44	0.49	0.49	0.36	0.00	0.36
Optical Brighteners (RFUB)	0.74	0.19	-0.46	0.71	1.00	0.93	0.22	0.77	0.77	0.42	0.00	0.42
Total Phosphorus (mg/L)	0.96	-0.48	-0.67	0.63	0.93	1.00	0.17	0.58	0.58	0.56	0.00	0.56
Chloride (mg/L)	0.03	-0.05	0.36	0.44	0.22	0.17	1.00	0.15	0.15	0.73	0.00	0.73
Fecal coliform (CFU/100mL)	0.49	0.11	-0.29	0.49	0.77	0.58	0.15	1.00	1.00	0.37	0.00	0.37
E. coli (CFU/100mL)	0.49	0.11	-0.29	0.49	0.77	0.58	0.15	1.00	1.00	0.37	0.00	0.37
B. dorei (copies/100mL)	0.43	0.00	0.09	0.36	0.42	0.56	0.73	0.37	0.37	1.00	0.00	1.00
B. EPA (copies/100mL)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
B. dorei + B. EPA (copies/100 ml)	0.43	0.00	0.09	0.36	0.42	0.56	0.73	0.37	0.37	1.00	0.00	1.00

Red values are significant correlations at p<0.05

Fecal coliform and *E. coli* were significantly and strongly correlated (rho = 0.77) with optical brighteners in the lake samples (see Table 4). Optical brighteners did not correlate with fecal bacteria in the discharge samples, likely due to false positive fluorescence from varied amounts and types of dissolved organic carbon in the discharge samples. Relationships of fecal coliform bacteria with optical brighteners are shown separately for the lake and discharge samples in Figure 10.

Fecal coliform and *E. coli* were significantly correlated with pH (weakly negative at rho = -0.47) in the discharge samples, but not in the lake samples. Combining the lake and discharge data showed a significant correlation of both fecal indicators with total phosphorus (rho = 0.6)

Total phosphorus was significantly correlated with optical brighteners and temperature with much higher coefficients in the lake samples (rho = 0.93 and 0.96, respectively) than the discharge samples (rho = 0.47 and 0.46). Relationships of total phosphorus with optical brighteners are shown separately for the lake and discharge samples in Figure 11. The discharge samples also exhibited a significant but weakly negative relationship between total phosphorus and chloride (rho = -0.53).

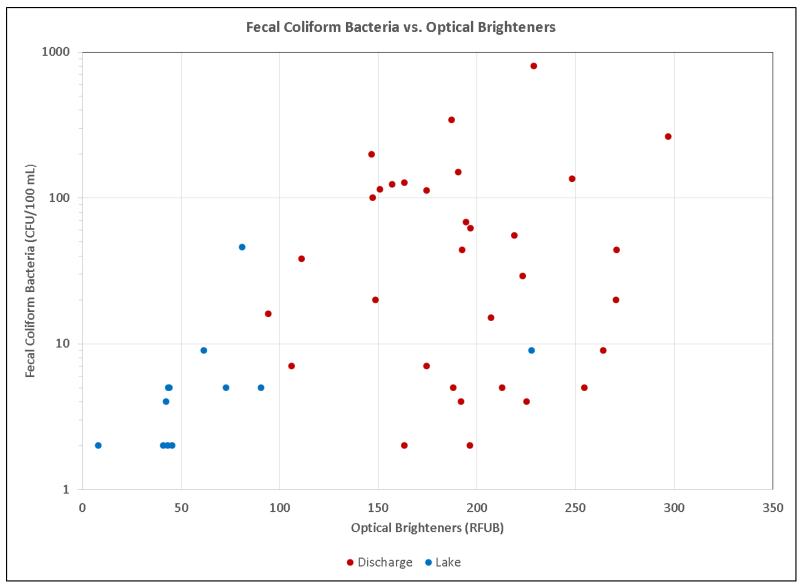


Figure 10. Fecal Coliform Bacteria Versus Optical Brighteners.

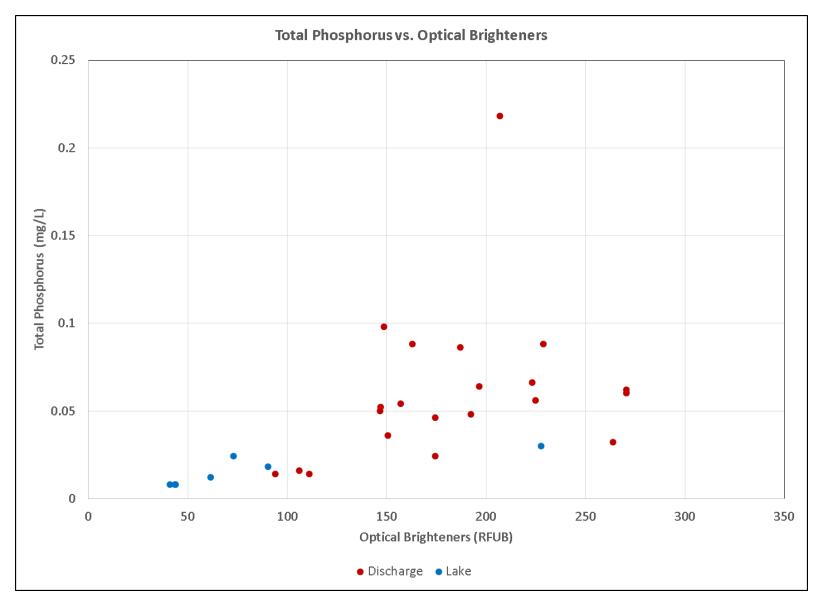


Figure 11. Total Phosphorus Versus Optical Brighteners.

4. CONCLUSIONS

Study results showed that many septic systems in the study area are a likely source of contamination to Lake Whatcom. The two molecular DNA biomarkers of human-specific bacteria were found at moderate to high concentrations of either biomarker at 6 of the 13 sampled discharge stations and at 1 of the 4 sampled lake stations located along the 2.3-mile-long shoreline. At one discharge station, biomarker concentrations were high for both wet weather sampling events and were present at levels similar to those measured in septic tank samples.

Discharge and lake samples contaminated by human biomarkers from septic system effluent also contained elevated levels of optical brighteners, fecal coliform bacteria, and total phosphorus. The elevated concentrations of optical brighteners indicate the presence of laundry detergents from septic system effluent. Fecal coliform bacteria and total phosphorus concentrations exceeded Washington State surface water quality standards, indicating impacts on public health and the lake environment, respectively. Both fecal coliform bacteria and total phosphorus positively correlated with optical brighteners, providing additional evidence that septic systems are a significant source of the observed contamination.

Fecal coliform bacteria and total phosphorus concentrations were several orders of magnitude higher in septic tank samples, indicating that the lake was contaminated by diffuse seepage from septic system drain fields rather than overland flow from failed systems. The numerous and diffuse septic system sources present in the study area would be difficult to locate and control for protection of public health and the environment. Connecting homes in the study area to a sanitary sewer would prevent the ongoing contamination of Lake Whatcom from septic systems in the area.

5. REFERENCES

Cao, Yiping, C. Hagedorn, O.C. Shanks, D. Wang, J. Ervin, J.F. Griffith, B.A. Layton, C.D. McGee, T.E. Riedel, and S.B. Weisberg. 2013. Towards Establishing a Human Fecal Contamination Index in Microbial Source Tracking. International Journal of Environmental Science and Engineering Research. Vol 4(3):46–58.

Ecology. 2016. Lake Whatcom Watershed Total Phosphorus and Bacteria Total Maximum Daily Loads: Volume 2. Water Quality Improvement Report and Implementation Strategy. Publication Number 13 10 012. Washington State Department of Ecology, Water Quality Program, Bellingham, Washington. Originally published in 2014; revised February 2016.

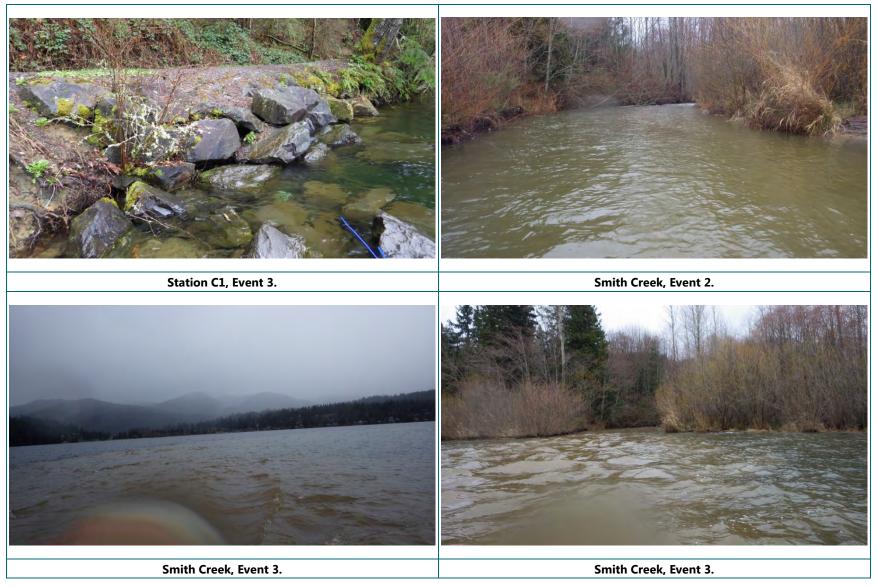
Herrera. 2016. Water Quality Monitoring and Quality Assurance Project Plan, Lake Whatcom North Shore On-Site Sewage System Leachate Detection Project. Prepared for Lake Whatcom Water and Sewer District by Herrera Environmental Consultants, Inc., Seattle, Washington. December.

Katz, B.G., S.M. Eberts, and L.J. Kauffman. 2011. Using Cl/Br Ratios and Other Indicators to Assess Potential Impacts on Groundwater Quality from Septic Systems: A Review and Examples from Principal Aquifers in the United States. US Geological Survey. Journal of Hydrology 397 (2011): 151–166.

Shaver, E., R. Horner, J. Skupien, C. May, and G. Ridley, 2007. Fundamentals of Urban Runoff Management, Technical and Institutional Issues. North American Lake Management, Madison, Wisconsin.

Wilson. 2015. Northshore System Extension Preliminary Investigation. Prepared by Wilson Engineering, LLC. November 19, 2015.

APPENDIX A


Photographic Documentation

WATER QUALITY MONITORING REPORT— LAKE WHATCOM NORTH SHORE OSS LEACHATE DETECTION PROJECT PHOTOGRAPHIC LOG

LAKE CONTROL STATION

LAKE IMPACT STATIONS

💩 Herrera

LAKE DISCHARGE STATIONS

💩 Herrera



WHERRERA

APPENDIX B

Laboratory Data Reports

Analysis Report Cover

Phone: (206) 781-0155 http://www.labcor.net

Final Report

A Professional Service Corporation in the Northwest

Address: 22 Su Se	70061 SEA errera Environmental Consultants, Inc 00 Sixth Avenue nite 1100 eattle, WA 98121 natcom OSS Detection	c		per: 170061R02 ate: 1/23/2017
Reference No.:				
inclosed please find	d results for samples submitted to our la	aboratory. A list of samples a	nd analyses follows:	
	# Client Sample # and Description	Analysis	Analysis Notes	Date Received
170061 - S1	C1 - Lake; Aliquots 50ml & 5ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S2	C2 - Lake; Aliquots 50ml & 5ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S3	C3 - Lake; Aliquots 50ml & 5ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S4	1D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S5	2D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S6	3L - Lake; Aliquots 50ml & 5ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S7	4D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S8	5D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S9	6D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S10	7D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S11	8D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S12	9D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S13	10D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S14	11D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S15	12D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S16	13D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S17	14D - Stormwater; Aliquots 20ml & 2ml	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S18	MB1 - Method Blank #1	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S19	MB2 - Method Blank #2	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S20	MB3 - Method Blank #3	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017
170061 - S21	MB4 - Method Blank #4	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		1/20/2017

Lab/Cor, Inc. 7619 6th Ave NW Seattle, WA 98117

Final Report

Phone: (206) 781-0155 http://www.labcor.net

A Professional Service Corporation in the Northwest

	rrera Environmental Consultants	s, Inc	Report Number: 170061R02 Report Date: 1/23/2017
•	Non Nonetine Control	SM 0000D C1a1 Facel	1/00/0017
170061 - S22	Neg - Negative Control	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU	1/20/2017
170061 - S23	Pos - Positive Control	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU	1/20/2017

SM 9222D G1c1- The presence of Fecal Coliform and E. coli from waters and/or environmental sources are tested using the following standard Fecal Coliform/ methods:

E.coli - CFU

SM9222 D&G1c1:

Qualitative and Quantitative analysis of Fecal Coliforms and E. coli using a Membrane Filtration procedure begins with selecting a volume of sample that will yield optimal colony counts. Several aliquots are filtered onto sterile, gridded, 0.1um MCE filters. The filters are then placed onto a culture dish containing fecal coliform selective medium. The samples are then incubated in a water bath at 44.5 \pm 0.2 °C for 24 \pm 2 hours.

Upon completion of incubation, positive fecal coliform colonies will produce various shades of blue while negative non-fecal coliform colonies will produce a gray to cream colored colony. Fecal Coliform densities are then calculated and reported as CFU/ 100ml.

After completion of the fecal coliform enumeration, the gridded filter is removed from the fecal coliform selective medium and transferred to a nutrient agar substrate containing 4-methylumbelliferyl-b-d-glucuronide (MUG). The samples are then incubated at 35 ± 0.5 °C for 4 hours. The sample is placed beneath a 365nm ultraviolet lamp to determine the presence of Escherichia coli. A colony producing a blue fluorescence around the periphery is diagnostic for the presence of E. coli.

Disclaimer The results reported relate only to the samples tested or analyzed; the laboratory is not responsible for data collected by personnel who are not affiliated with the laboratory. Results reported in both structures/cm3 and structures/mm2 are dependent on the sample volume and area. These parameters are measured and recorded by non-laboratory personnel and are not covered by the laboratory's accreditation. Interpretation of these results is the sole responsibility of the client.

If further clarification of these results is needed, please call us. Thank you for allowing the staff at Lab/Cor, Inc. the opportunity to provide you with the analytical services.

Sincerely,

Derk Wipprecht

Laboratory Supervisor

Report Number: 170061R02

Date Received: 1/20/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170061 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom OSS Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S1	C1 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	<2	CFU/ 100ml	0 - 7.4	1/19/2017	9:26 AM	DW 1/21/2017
S1	C1 - Lake; Aliquots 50ml & 5ml	E. COLI	<2	CFU/ 100ml	0 - 7.4	1/19/2017	9:26 AM	DW 1/21/2017
S1	C1 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	<20	CFU/ 100ml	0 - 74	1/19/2017	9:26 AM	DW 1/21/2017
S1	C1 - Lake; Aliquots 50ml & 5ml	E. COLI	<20	CFU/ 100ml	0 - 74	1/19/2017	9:26 AM	DW 1/21/2017
S2	C2 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	<2	CFU/ 100ml	0 - 7.4	1/19/2017	9:32 AM	DW 1/21/2017
S2	C2 - Lake; Aliquots 50ml & 5ml	E. COLI	<2	CFU/ 100ml	0 - 7.4	1/19/2017	9:32 AM	DW 1/21/2017
S2	C2 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	<20	CFU/ 100ml	0 - 74	1/19/2017	9:32 AM	DW 1/21/2017
S2	C2 - Lake; Aliquots 50ml & 5ml	E. COLI	<20	CFU/ 100ml	0 - 74	1/19/2017	9:32 AM	DW 1/21/2017
S3	C3 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	4	CFU/ 100ml	0.4 - 14.4	1/19/2017	9:40 AM	DW 1/21/2017
S3	C3 - Lake; Aliquots 50ml & 5ml	E. COLI	4	CFU/ 100ml	0.4 - 14.4	1/19/2017	9:40 AM	DW 1/21/2017
S3	C3 - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	<20	CFU/ 100ml	0 - 74	1/19/2017	9:40 AM	DW 1/21/2017
S3	C3 - Lake; Aliquots 50ml & 5ml	E. COLI	<20	CFU/ 100ml	0 - 74	1/19/2017	9:40 AM	DW 1/21/2017
S4	1D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	150	CFU/ 100ml	122.6 - 177.4	1/19/2017	11:00 AM	DW 1/21/2017
S4	1D - Stormwater; Aliquots 20ml & 2ml	E. COLI	145	CFU/ 100ml	118.1 - 171.9	1/19/2017	11:00 AM	DW 1/21/2017
S4	1D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	350	CFU/ 100ml	140 - 720	1/19/2017	11:00 AM	DW 1/21/2017
S4	1D - Stormwater; Aliquots 20ml & 2ml	E. COLI	300	CFU/ 100ml	110 - 655	1/19/2017	11:00 AM	DW 1/21/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170061 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom OSS Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S5	2D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	135	CFU/ 100ml	109 - 161	1/19/2017	11:32 AM	DW 1/21/2017
S5	2D - Stormwater; Aliquots 20ml & 2ml	E. COLI	105	CFU/ 100ml	82.1 - 127.9	1/19/2017	11:32 AM	DW 1/21/2017
S5	2D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	100	CFU/ 100ml	10 - 360	1/19/2017	11:32 AM	DW 1/21/2017
S5	2D - Stormwater; Aliquots 20ml & 2ml	E. COLI	100	CFU/ 100ml	10 - 360	1/19/2017	11:32 AM	DW 1/21/2017
S6	3L - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	46	CFU/ 100ml	36.4 - 55.6	1/19/2017	11:44 AM	DW 1/21/2017
S6	3L - Lake; Aliquots 50ml & 5ml	E. COLI	42	CFU/ 100ml	32.8 - 51.2	1/19/2017	11:44 AM	DW 1/21/2017
S6	3L - Lake; Aliquots 50ml & 5ml	FECAL COLIFORM	100	CFU/ 100ml	32 - 234	1/19/2017	11:44 AM	DW 1/21/2017
S6	3L - Lake; Aliquots 50ml & 5ml	E. COLI	60	CFU/ 100ml	12 - 176	1/19/2017	11:44 AM	DW 1/21/2017
S 7	4D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	50	CFU/ 100ml	23.5 - 92	1/19/2017	11:58 AM	DW 1/21/2017
S 7	4D - Stormwater; Aliquots 20ml & 2ml	E. COLI	25	CFU/ 100ml	8 - 58.5	1/19/2017	11:58 AM	DW 1/21/2017
S 7	4D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	100	CFU/ 100ml	10 - 360	1/19/2017	11:58 AM	DW 1/21/2017
S 7	4D - Stormwater; Aliquots 20ml & 2ml	E. COLI	50	CFU/ 100ml	5 - 280	1/19/2017	11:58 AM	DW 1/21/2017
S 8	5D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	<5	CFU/ 100ml	0 - 18.5	1/19/2017	12:17 PM	DW 1/21/2017
S 8	5D - Stormwater; Aliquots 20ml & 2ml	E. COLI	<5	CFU/ 100ml	0 - 18.5	1/19/2017	12:17 PM	DW 1/21/2017
S 8	5D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	<50	CFU/ 100ml	0 - 185	1/19/2017	12:17 PM	DW 1/21/2017
S 8	5D - Stormwater; Aliquots 20ml & 2ml	E. COLI	<50	CFU/ 100ml	0 - 185	1/19/2017	12:17 PM	DW 1/21/2017

Report Number: 170061R02 Date Received: 1/20/2017

Report Number: 170061R02 **Date Received:** 1/20/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170061 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom OSS Detection

Lab/Cor **Client Sample** Analyte Type Analysis UOM 95% Confidence Sample Sample Analyst Result Interval Date Time Sample No. 6D - Stormwater; Aliguots 20ml & 2ml 75 CFU/ 100ml 42 - 124 1/19/2017 12:27 PM DW **S**9 FECAL COLIFORM 1/21/2017 6D - Stormwater; Aliquots 20ml & 2ml E. COLI CFU/ 100ml 31 - 105 DW 60 1/19/2017 12:27 PM **S**9 1/21/2017 6D - Stormwater; Aliguots 20ml & 2ml 0 - 185 12:27 PM DW FECAL COLIFORM <50 CFU/ 100ml 1/19/2017 **S**9 1/21/2017 6D - Stormwater; Aliguots 20ml & 2ml CFU/ 100ml 0 - 185 12:27 PM DW **S**9 E. COLI <50 1/19/2017 1/21/2017 7D - Stormwater; Aliquots 20ml & 2ml **FECAL COLIFORM** <5 CFU/ 100ml 0 - 18.5 1/19/2017 12:34 PM DW S10 1/21/2017 S10 7D - Stormwater; Aliquots 20ml & 2ml E. COLI <5 CFU/ 100ml 0 - 18.5 1/19/2017 12:34 PM DW 1/21/2017 7D - Stormwater; Aliquots 20ml & 2ml DW FECAL COLIFORM <50 CFU/ 100ml 0 - 185 1/19/2017 12:34 PM S10 1/21/2017 7D - Stormwater; Aliquots 20ml & 2ml E. COLI CFU/ 100ml 0 - 185 DW <50 1/19/2017 12:34 PM S10 1/21/2017 5 8D - Stormwater; Aliquots 20ml & 2ml FECAL COLIFORM CFU/ 100ml 0.5 - 28 1/19/2017 12:45 PM DW S11 1/21/2017 8D - Stormwater; Aliquots 20ml & 2ml 5 CFU/ 100ml 0.5 - 28 1/19/2017 12:45 PM DW S11 E. COLI 1/21/2017 8D - Stormwater; Aliquots 20ml & 2ml <50 CFU/ 100ml 0 - 185 1/19/2017 DW S11 FECAL COLIFORM 12:45 PM 1/21/2017 DW 8D - Stormwater; Aliquots 20ml & 2ml E. COLI <50 CFU/ 100ml 0 - 185 1/19/2017 12:45 PM S11 1/21/2017 S12 9D - Stormwater; Aliguots 20ml & 2ml FECAL COLIFORM CFU/ 100ml 1:07 PM DW 80 46 - 130 1/19/2017 1/21/2017 9D - Stormwater; Aliguots 20ml & 2ml E. COLI CFU/ 100ml 42 - 124 1/19/2017 1:07 PM DW S12 75 1/21/2017 9D - Stormwater; Aliguots 20ml & 2ml FECAL COLIFORM CFU/ 100ml 0 - 185 1/19/2017 1:07 PM DW S12 <50 1/21/2017 S12 9D - Stormwater; Aliguots 20ml & 2ml E. COLI <50 CFU/ 100ml 0 - 185 1/19/2017 1:07 PM DW 1/21/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170061 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom OSS Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S13	10D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	90	CFU/ 100ml	53.5 - 142	1/19/2017	1:16 PM	DW 1/21/2017
S13	10D - Stormwater; Aliquots 20ml & 2ml	E. COLI	70	CFU/ 100ml	38.5 - 117.5	1/19/2017	1:16 PM	DW 1/21/2017
S13	10D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	<50	CFU/ 100ml	0 - 185	1/19/2017	1:16 PM	DW 1/21/2017
S13	10D - Stormwater; Aliquots 20ml & 2ml	E. COLI	<50	CFU/ 100ml	0 - 185	1/19/2017	1:16 PM	DW 1/21/2017
S14	11D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	210	CFU/ 100ml	177.6 - 242.4	1/19/2017	1:29 PM	DW 1/21/2017
S14	11D - Stormwater; Aliquots 20ml & 2ml	E. COLI	180	CFU/ 100ml	150 - 210	1/19/2017	1:29 PM	DW 1/21/2017
S14	11D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	<50	CFU/ 100ml	0 - 185	1/19/2017	1:29 PM	DW 1/21/2017
S14	11D - Stormwater; Aliquots 20ml & 2ml	E. COLI	<50	CFU/ 100ml	0 - 185	1/19/2017	1:29 PM	DW 1/21/2017
S15	12D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	45	CFU/ 100ml	20 - 85.5	1/19/2017	1:39 PM	DW 1/21/2017
S15	12D - Stormwater; Aliquots 20ml & 2ml	E. COLI	25	CFU/ 100ml	8 - 58.5	1/19/2017	1:39 PM	DW 1/21/2017
S15	12D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	100	CFU/ 100ml	10 - 360	1/19/2017	1:39 PM	DW 1/21/2017
S15	12D - Stormwater; Aliquots 20ml & 2ml	E. COLI	100	CFU/ 100ml	10 - 360	1/19/2017	1:39 PM	DW 1/21/2017
S16	13D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	20	CFU/ 100ml	5 - 51	1/19/2017	1:44 PM	DW 1/21/2017
S16	13D - Stormwater; Aliquots 20ml & 2ml	E. COLI	15	CFU/ 100ml	3 - 44	1/19/2017	1:44 PM	DW 1/21/2017
S16	13D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	<50	CFU/ 100ml	0 - 185	1/19/2017	1:44 PM	DW 1/21/2017
S16	13D - Stormwater; Aliquots 20ml & 2ml	E. COLI	<50	CFU/ 100ml	0 - 185	1/19/2017	1:44 PM	DW 1/21/2017

Report Number: 170061R02 **Date Received:** 1/20/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170061 SEA

Report Number: 170061R02 **Date Received:** 1/20/2017

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom OSS Detection

_ab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S17	14D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	125	CFU/ 100ml	100 - 150	1/19/2017	1:53 PM	DW 1/21/2017
S17	14D - Stormwater; Aliquots 20ml & 2ml	E. COLI	100	CFU/ 100ml	77.6 - 122.4	1/19/2017	1:53 PM	DW 1/21/2017
S17	14D - Stormwater; Aliquots 20ml & 2ml	FECAL COLIFORM	50	CFU/ 100ml	5 - 280	1/19/2017	1:53 PM	DW 1/21/2017
S17	14D - Stormwater; Aliquots 20ml & 2ml	E. COLI	50	CFU/ 100ml	5 - 280	1/19/2017	1:53 PM	DW 1/21/2017

Reviewed by:

Laboratory Supervisor

FECAL COUNTS

77192

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
n n tr	50	ø	<2	1	1/20/17	1/21/17
170061-01	5	ø	12	1. 10 July 3 Mart	11:00	11:00
	50	ø	5202	Hen V	î .	1
- 02	5	ø	1 20		1.	1.0
	60	2	4 5	4J	影響的 ALC 11	
- 03	5	ø	< 20			
	20	30	150	~		
-04	2	7	350			
and the second	20	27	/35	~	記載でいたです	
-05	2	2	100	「「「「「「「「」」」」		
	50	23	46	V		
-06	5	5	100	1	1	
an ann an	20	10	50	55 J	Print Barry	
- 07	2	2	100 -		を日本に知	
-	20	ø	< 5			
-08	2	ø	5 50			
	20	15	75	68 J	10 M 10 M 10	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
-09	2	B	< 50	1797 A. S. S.		Sec. Sak
	20	ø	< 5	~	12.1	
-10	2	ø	1 50		100	
	20	N A STREET	5	55	2	
- 11	2	ø	\$ 50			
	20	16	80	73 J	P1.	
-12	2	ø	< 50			
Lab Duplicate	Cart Anna Anna Anna			$ \begin{array}{c} \displaystyle \mathrm{d} \mathbf{r}_{\mathrm{e}} = \left(\mathbf{r}_{\mathrm{e}} \right)^{-1} \left(\mathbf{r}_{\mathrm{e}} \right$		
Negative Control					175) oz 3	
Positive Control	語の構造	ality ality	The second of the			

Calculation of Results

Density: use if only one count is within Ideal range (20-60 colonies)

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, SampleFiltered} \times 100$

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100 \, mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

FECAL COUTS

2 2 3 2

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
	20	18	.90	82 J	,/20/17	1/21/17
170061-13	2	ø	< 50		11:00	11:00
	20	42	1 210	1905	1	1
- 14	2	ø	5 50			
	P. P	9	45	50J		
-15	20	2	100		1	- EL 2
	20	4	.20	187		
- 14	2	ø	550		S	
No. The second second	20	25	125		CAR STOR	となど、世代
-17	2	SI I SA	50		1.4	
MB ±1	100	ø	*1		1	
M8 4 2	100	10	< 1		201	
MB # 3	100	ø	* 1			
MA #4	-100	8	< 1			
1.1.1	1 July 1	1				
	State State	States Provent			Constant and	
Lab Duplicate		The second		1 Sections	11.00	1 Sales & Store -
Negative Control	100	ø	< 1			
Positive Control	100	231	231	12		Y

Calculation of Results

Density: use if only one count is within ideal range (20-60 colonies)

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, SampleFiltered} \times 100$

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100 \, mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

E. COLI COUNTS

10 8 2

Sample ID	Volume (mL)	Colonies counted	Result (GPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
	50	ø	<2	1	1/21/17	1/2/17
170061-01	5	\$ 520			11:00	12.00
	50	B	12	/	1	
- 02	5	ø	< 20			
	50	3	4	AJ	4	
-03	5	ø	< 20			
	20	29	145	-		1
- 04	2	6	300			
	20	21	105			
-05	2	2	100			
	50	21	42			
-06	5	3	60			1000
	20	5	25	27 5		1995年の「朝田福岡
707	CUP EN S	1 1	50			
	20	ø	55	1	4 2	
-08	2	ø	5 50			
10 3 La 1 2	20	12	60	55 J	5 - 41° - 42°	
-09	2	ø	< 50			
	20	ø	55	1		
-10	2	ø	< 50			
	20	1.1	5	55	1.201 - 1.22	
-11	2	ø	550		的。 在1993年	
		15	75	685		
-12-	20	ø	< 50			
Lab Duplicate					L'ART LANS	
Negative Control				-		
Positive Control	in the state of	N. Harris Martin		and the state	5	

Calculation of Results

Density: use if only one count is within ideal range (20-60 colonies)

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, SampleFiltered} \times 100$

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

E. COLI COUNTS

pg 282

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
	20	14	70	645	1/21/17	1/21/17
170061-13	20	Ø	\$ 50		11:00	12:00
	20	36	180			
- 14	2	ø	< 50			
	20		- 25	325		
-15-	2	5	100	A Contraction	S. 14	1.
	20	.3	15	145		
-14	2	ø	< 50			-
	20	20	100			and the second second
-17	20		50		and the second	
MB # 1	100	ø	21			
MB # 2	100	ø	<1			
MB # 3	00/	ø	*1			
MIB # 4	109	ø	444 			
12 3.4		1			52	
All and a state of the state of						
Lab Duplicate	- 41.51 C at	Real of the	Table de	17 CT - W CT 144 1		
Negative Control	100	ø	< 1_			
Positive Control	100	231	231	Se	1.1.1.2	

Calculation of Results

Density: use if only one count is within ideal range (20-60 colonies)

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, Sample Filtered} \times 100$

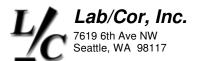
Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies\,counted}{\sum mL\,sample\,filtered} \times 100$

7619 6 Seattle, Office (206) Fax (206 mail@l: www.la) 789-8424 abcor.net <i>bcor.net</i>	Client: Herrera E Address: Z200 St City, State, Zip: Seaff Contact: Rob Zise Phone: 206-787-826 Email: rz(seffe@her Other Info:	rerai	Fax:	m		Consultai	1/5	E. c E. c E. c Het Bac MP. Cry Gia Tur	lytical P coli P/A coli / Col coli / Fec erotroph terial ID A Analys ptosporio rdia bidity robial Li	iform MF al Colifor ic Bacteri sis	'n	Turn: Ti 7 d 5 d 3 d 3 d 3 d 3 d 3 d	
		teom OSS Detec	tion	Project	Num	ber:				P.	O. Num	ber:		
Sample Number		ample Description		Sample	Туре	-	Sample	S	ample Ti	lme	Flor	w Rate (lpm)	Total
CI	Lake	filtervolume note	Water	Swab	Air	Other	Date	On	Off	Total	Start	End	Avg	Volume
C2	Lake		X		_	-	1/19/17	09	26	10.25	1	1.3		1000
C3	Lake	· · · ·			-			09	32					1.00
10	Stormwa	iter					-	09	40	1	-			
21	Stormi	inter						11	00			11.6	1.20	1 100
31	Lake	00.14						100 million (100 m	32			-		
4D	Stormy								44		1.1			
5A	1	24.0	1			-	1	11	1.	11.				
6D			11					12					- t	20-
70	V		4		-		1 1	12						
To be com	oleted by Iab)	Receipt Tem	Deratu	e 4		°C	Receipt		34		1			
Internal Lab U Prelim Released By :	lse Only: I.] Phone 🔲 E-	Final Result	s Released	l:				py / Inv	oice Mai		HOOD			
	you are agreeing t	o comply with Lab/Cor's Requests, T	Time:	Contracts.	I	Relinqui	shed by:	R	eviewed	D	* Call al. ate:		Time:	Ahrs or less

Lab/Cor, Inc 7619 6 th Ave NW Seattle, WA 98117 Office (206) 781-0155 Fax (206) 789-842 mail@labcor.net www.labcor.net	Address: City, State, Zip: Contact: Zise Phone: Email:	Client: Herrera Environmental Consultants Address:						Analy E. co E. co Heter Bactr MPA Cryp Giard Turb	tical Pro li P/A li / Colifi li / Fecal rotrophic erial ID Analysi tosporidi dia idity obial Lin	orm MPN Coliforn Bacteria s um	1 -	Time: 7 days 5 days 3 days 48 hours 24 hours* (Not all TATs are available for all analysis types)	
Project Name: <u>W</u>	hatcom OSS Detection	ôn	Project	Num	ber:			_	_ P.0). Num	ber:	_	
Sample	Sample Description		Sample	Туре	-	Sample Date		mple Ti	1	1.2.2.8.1	w Rate (l	1.000	Total Volume
Number X 5	tornwater	Water	Swab	Air	Other				Total	Start	End	Avg	
8D S	torm water	X	1	-		1/19/17	1.00	45					loom
9D								13 07		-			
IOD							1						
lid							13	29	-		-	-	
120								39	-				
13A					11		-	44					++-
14D	₩	V	1	-	-	4	13	53					V -
* File	r Lake at 50 mL	and	5	mL		1							
Fil	ker Stormwater at 20	SmL		21							1	12	
(To be completed		International states	5	y°	°C	Recei	pt Cor	idition	1 90	d_			
Internal Lab Use On Prelim Released: By : Fax Pho	ily: Einal Re me □ E-mail □ Verbal By □	sults Relea Fax 🔲 i	Phone 		1	Harc	leopy / h	nvoice N Review				747	C 24hars and Land
	re agreeing to comply with Lab/Cor's Reques				2.0						l ahead fi	Time:	of 24hrs or less
Relinquished by:	21 1	Date: 1/20/16 Time: 0830 Relinquished by: 2.9.9 Date: 1/20/17 Time: 0830 Received by:							Date:		Time:		

Data Quality Assurance Worksheet


		Ву	G. Catarra	
Project Name/No./Client:	Lake Whatcom / 16-06326-000 / LWWSD.	Date	1/26/2017	Page <u>1</u> of <u>1</u>
Laboratory/Parameters:	LabCor, Inc. / fecal bacteria and E. coli	Checked:	initials	
Sample Date/Sample ID:	1/19/2017 / 17 samples		date	

		Pre-preser Holding (hour	Times	Total Ho Times (d		Method	Matrix Sp Surroga Recovery	ate	Lab Con Samples Re (%)		Lab Dupl RPD (Field Dup RPD (
Parameter	Completeness/ Methodology	Reported	Goal	Reported	Goal	<u>Blanks</u> Reporting Limit	Reported	Goa 1	Reported	Goal	Reported	Goal ¹	Reported	Goal ¹	ACTION
Fecal coliform	OK / SM9222D	NA	NA	1	≤1	≤2 2	NA	NA	NA	NA	NA	≤35	NA	NA	C3, 4D,6D,8D-13D "J" DUE TO PLATE COUNTS. RESULTS CALCULATED PER METHOD.
E. coli	OK / SM9222D	NA	NA	1	≤1	≤2 2	NA	NA	NA	NA	NA	≤35	NA	NA	C3, 4D, 6D, 8D-10D, 12D, 13D "J" due to plate counts. Results calculated per method.
						3									

¹ If the sample or duplicate value is less than five times the reporting limit, the difference is calculated rather than the relative percent difference (RPD). The QA goal is a difference <2 times the detection limit instead of the number indicated in the goal column.

NA – not applicable or not available; NC – not calculable due to one or more values below the detection limit.

PJJ https://herrerainc.sharepoint.com/16-06326-000/shared documents/report/apxb/b04 event 1 qa worksheet.docx

Analysis Report Cover

Phone: (206) 781-0155 http://www.labcor.net

Final Report

A Professional Service Corporation in the Northwest

Job Number: 1 Client: H	•	nber: 170242R02 Date: 3/17/2017		
S	200 Sixth Avenue Suite 1100 Seattle, WA 98121			
Project Name: V	Vhatcom Septic Detection			
Project No.: 1	6-06326-000			
PO Number: 1	6-06326 R2			
PWS ID:				
Reference No.:				
Enclosed please fin	nd results for samples submitted	to our laboratory. A list of sa	amples and analyses follows:	
Lab/Cor Sample	# Client Sample # and Descript	tion Analysis	Analysis Notes	Date
170242 - S1	C1 - Control - Lake	SM 9222D G1c1-	Fecal	3/16/2

Lab/Cor Sample #	Client Sample # and Description	Analysis	Analysis Notes	Date Receive
170242 - S1	C1 - Control - Lake	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S2	C2 - Control - Lake	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S3	1D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S4	2D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S5	3D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S6	4L - Lake Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S7	5D (DUP) - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S8	6D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S9	7D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S10	8D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S11	9D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S12	10D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S13	11L - Lake Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S14	12L - Lake Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S15	13D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S16	14D - Discharge Water	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S17	OSS - Raw Sewage (High Level)	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S18	18 - Method Blank 1	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S19	19 - Method Blank 2	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S20	20 - Negative Control	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017
170242 - S21	21 - Positive Control	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/16/2017

Lab/Cor, Inc. 7619 6th Ave NW Seattle, WA 98117

Final Report

Phone: (206) 781-0155 http://www.labcor.net

A Professional Service Corporation in the Northwest

Job Number: 170242

Client: Herrera Environmental Consultants, Inc

SEA

Report Number: 170242R02 Report Date: 3/17/2017

Project Name: Whatcom Septic Detection

SM 9222D G1c1- The presence of Fecal Coliform and E. coli from waters and/or environmental sources are tested using the following standard Fecal Coliform/ methods:

E.coli - CFU

SM9222 D&G1c1:

Qualitative and Quantitative analysis of Fecal Coliforms and E. coli using a Membrane Filtration procedure begins with selecting a volume of sample that will yield optimal colony counts. Several aliquots are filtered onto sterile, gridded, 0.1 um MCE filters. The filters are then placed onto a culture dish containing fecal coliform selective medium. The samples are then incubated in a water bath at $44.5 \pm 0.2 \degree$ for 24 ± 2 hours.

Upon completion of incubation, positive fecal coliform colonies will produce various shades of blue while negative non-fecal coliform colonies will produce a gray to cream colored colony. Fecal Coliform densities are then calculated and reported as CFU/ 100ml.

After completion of the fecal coliform enumeration, the gridded filter is removed from the fecal coliform selective medium and transferred to a nutrient agar substrate containing 4-methylumbelliferyl-b-d-glucuronide (MUG). The samples are then incubated at $35 \pm 0.5 \,^{\circ}$ C for 4 hours. The sample is placed beneath a 365nm ultraviolet lamp to determine the presence of Escherichia coli. A colony producing a blue fluorescence around the periphery is diagnostic for the presence of E. coli.

Disclaimer The results reported relate only to the samples tested or analyzed; the laboratory is not responsible for data collected by personnel who are not affiliated with the laboratory. Results reported in both structures/cm3 and structures/mm2 are dependent on the sample volume and area. These parameters are measured and recorded by non-laboratory personnel and are not covered by the laboratory's accreditation. Interpretation of these results is the sole responsibility of the client.

If further clarification of these results is needed, please call us. Thank you for allowing the staff at Lab/Cor, Inc. the opportunity to provide you with the analytical services.

Sincerely,

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S1	C1 - Control - Lake	FECAL COLIFORM	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	9:41 AM	AT 3/17/2017
S1	C1 - Control - Lake	E. COLI	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	9:41 AM	AT 3/17/2017
S1	C1 - Control - Lake	FECAL COLIFORM	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	9:41 AM	AT 3/17/2017
S1	C1 - Control - Lake	E. COLI	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	9:41 AM	AT 3/17/2017
S2	C2 - Control - Lake	FECAL COLIFORM	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	9:50 AM	AT 3/17/2017
S2	C2 - Control - Lake	E. COLI	<50	CFU/ 100ml (2mL)	0 - 185	3/15/2017	9:50 AM	AT 3/17/2017
S2	C2 - Control - Lake	FECAL COLIFORM	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	9:50 AM	AT 3/17/2017
S2	C2 - Control - Lake	E. COLI	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	9:50 AM	AT 3/17/2017
S3	1D - Discharge Water	FECAL COLIFORM	80	CFU/ 100ml (5ml)	20 - 204	3/15/2017	10:50 AM	AT 3/17/2017
S3	1D - Discharge Water	E. COLI	80	CFU/ 100ml (5ml)	20 - 204	3/15/2017	10:50 AM	AT 3/17/2017
S3	1D - Discharge Water	FECAL COLIFORM	114	CFU/ 100ml (50ml)	98.9 - 129.1	3/15/2017	10:50 AM	AT 3/17/2017
S3	1D - Discharge Water	E. COLI	114	CFU/ 100ml (50ml)	98.9 - 129.1	3/15/2017	10:50 AM	AT 3/17/2017
S4	2D - Discharge Water	FECAL COLIFORM	120	CFU/ 100ml (5ml)	44 - 262	3/15/2017	11:05 AM	AT 3/17/2017
S4	2D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	11:05 AM	AT 3/17/2017
S4	2D - Discharge Water	FECAL COLIFORM	100	CFU/ 100ml (50ml)	85.9 - 114.1	3/15/2017	11:05 AM	AT 3/17/2017
S4	2D - Discharge Water	E. COLI	8	CFU/ 100ml (50ml)	2 - 20.4	3/15/2017	11:05 AM	AT 3/17/2017

Report Number: 170242R02 Date Received: 3/16/2017

Report Number: 170242R02

Date Received: 3/16/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S5	3D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	11:20 AM	AT 3/17/2017
S5	3D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	11:20 AM	AT 3/17/2017
S5	3D - Discharge Water	FECAL COLIFORM	44	CFU/ 100ml (50ml)	34.6 - 53.4	3/15/2017	11:20 AM	AT 3/17/2017
S5	3D - Discharge Water	E. COLI	14	CFU/ 100ml (50ml)	5.6 - 28.8	3/15/2017	11:20 AM	AT 3/17/2017
S6	4L - Lake Water	FECAL COLIFORM	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	11:35 AM	AT 3/17/2017
S6	4L - Lake Water	E. COLI	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	11:35 AM	AT 3/17/2017
S6	4L - Lake Water	FECAL COLIFORM	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	11:35 AM	AT 3/17/2017
S6	4L - Lake Water	E. COLI	<5	CFU/ 100ml (20ml)	0 - 18.5	3/15/2017	11:35 AM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	FECAL COLIFORM	20	CFU/ 100ml (5ml)	2 - 112	3/15/2017	12:15 PM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	E. COLI	20	CFU/ 100ml (5ml)	2 - 112	3/15/2017	12:15 PM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	FECAL COLIFORM	<4	CFU/ 100ml (25ml)	0 - 14.8	3/15/2017	12:15 PM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	E. COLI	<4	CFU/ 100ml (25ml)	0 - 14.8	3/15/2017	12:15 PM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	FECAL COLIFORM	2	CFU/ 100ml (50ml)	0.2 - 11.2	3/15/2017	12:15 PM	AT 3/17/2017
S7	5D (DUP) - Discharge Water	E. COLI	2	CFU/ 100ml (50ml)	0.2 - 11.2	3/15/2017	12:15 PM	AT 3/17/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S8	6D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	12:26 PM	AT 3/17/2017
S8	6D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	12:26 PM	AT 3/17/2017
S8	6D - Discharge Water	FECAL COLIFORM	8	CFU/ 100ml (50ml)	2 - 20.4	3/15/2017	12:26 PM	AT 3/17/2017
S8	6D - Discharge Water	E. COLI	8	CFU/ 100ml (50ml)	2 - 20.4	3/15/2017	12:26 PM	AT 3/17/2017
S9	7D - Discharge Water	FECAL COLIFORM	340	CFU/ 100ml (5ml)	198 - 544	3/15/2017	12:51 PM	AT 3/17/2017
S9	7D - Discharge Water	E. COLI	320	CFU/ 100ml (5ml)	184 - 520	3/15/2017	12:51 PM	AT 3/17/2017
S9	7D - Discharge Water	FECAL COLIFORM	184	CFU/ 100ml (50ml)	164.8 - 203.2	3/15/2017	12:51 PM	AT 3/17/2017
S9	7D - Discharge Water	E. COLI	178	CFU/ 100ml (50ml)	159.1 - 196.9	3/15/2017	12:51 PM	AT 3/17/2017
S10	8D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	1:03 PM	AT 3/17/2017
S10	8D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	1:03 PM	AT 3/17/2017
S10	8D - Discharge Water	FECAL COLIFORM	4	CFU/ 100ml (50ml)	0.4 - 14.4	3/15/2017	1:03 PM	AT 3/17/2017
S10	8D - Discharge Water	E. COLI	4	CFU/ 100ml (50ml)	0.4 - 14.4	3/15/2017	1:03 PM	AT 3/17/2017
S11	9D - Discharge Water	FECAL COLIFORM	40	CFU/ 100ml (5ml)	4 - 144	3/15/2017	1:18 PM	AT 3/17/2017
S11	9D - Discharge Water	E. COLI	40	CFU/ 100ml (5ml)	4 - 144	3/15/2017	1:18 PM	AT 3/17/2017
S11	9D - Discharge Water	FECAL COLIFORM	38	CFU/ 100ml (50ml)	23 - 59.2	3/15/2017	1:18 PM	AT 3/17/2017
S11	9D - Discharge Water	E. COLI	38	CFU/ 100ml (50ml)	23 - 59.2	3/15/2017	1:18 PM	AT 3/17/2017

Report Number: 170242R02 **Date Received:** 3/16/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S12	10D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	1:35 PM	AT 3/17/2017
S12	10D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	1:35 PM	AT 3/17/2017
S12	10D - Discharge Water	FECAL COLIFORM	2	CFU/ 100ml (50ml)	0.2 - 11.2	3/15/2017	1:35 PM	AT 3/17/2017
S12	10D - Discharge Water	E. COLI	2	CFU/ 100ml (50ml)	0.2 - 11.2	3/15/2017	1:35 PM	AT 3/17/2017
S13	11L - Lake Water	FECAL COLIFORM	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	1:56 PM	AT 3/17/2017
S13	11L - Lake Water	E. COLI	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	1:56 PM	AT 3/17/2017
S13	11L - Lake Water	FECAL COLIFORM	5	CFU/ 100ml (20ml)	0.5 - 28	3/15/2017	1:56 PM	AT 3/17/2017
S13	11L - Lake Water	E. COLI	5	CFU/ 100ml (20ml)	0.5 - 28	3/15/2017	1:56 PM	AT 3/17/2017
S14	12L - Lake Water	FECAL COLIFORM	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	2:09 PM	AT 3/17/2017
S14	12L - Lake Water	E. COLI	<50	CFU/ 100ml (2ml)	0 - 185	3/15/2017	2:09 PM	AT 3/17/2017
S14	12L - Lake Water	FECAL COLIFORM	10	CFU/ 100ml (20ml)	1 - 36	3/15/2017	2:09 PM	AT 3/17/2017
S14	12L - Lake Water	E. COLI	10	CFU/ 100ml (20ml)	1 - 36	3/15/2017	2:09 PM	AT 3/17/2017
S15	13D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	2:20 PM	AT 3/17/2017
S15	13D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	2:20 PM	AT 3/17/2017
S15	13D - Discharge Water	FECAL COLIFORM	10	CFU/ 100ml (50ml)	3.2 - 23.4	3/15/2017	2:20 PM	AT 3/17/2017
S15	13D - Discharge Water	E. COLI	10	CFU/ 100ml (50ml)	3.2 - 23.4	3/15/2017	2:20 PM	AT 3/17/2017

Report Number: 170242R02 **Date Received:** 3/16/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S16	14D - Discharge Water	FECAL COLIFORM	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	2:40 PM	AT 3/17/2017
S16	14D - Discharge Water	E. COLI	<20	CFU/ 100ml (5ml)	0 - 74	3/15/2017	2:40 PM	AT 3/17/2017
S16	14D - Discharge Water	FECAL COLIFORM	8	CFU/ 100ml (50ml)	2 - 20.4	3/15/2017	2:40 PM	AT 3/17/2017
S16	14D - Discharge Water	E. COLI	8	CFU/ 100ml (50ml)	2 - 20.4	3/15/2017	2:40 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	FECAL COLIFORM	1500000	CFU/ 100ml (0.01ml)	1377525.5 - 1622474.5	3/15/2017	3:50 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	E. COLI	1500000	CFU/ 100ml (0.01ml)	1377525.5 - 1622474.5	3/15/2017	3:50 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	FECAL COLIFORM	880000	CFU/ 100ml (0.1ml)	850335.2 - 909664.8	3/15/2017	3:50 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	E. COLI	880000	CFU/ 100ml (0.1ml)	850335.2 - 909664.8	3/15/2017	3:50 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	FECAL COLIFORM	TNTC	CFU/ 100ml (1.0ml)		3/15/2017	3:50 PM	AT 3/17/2017
S17	OSS - Raw Sewage (High Level)	E. COLI	TNTC	CFU/ 100ml (1.0ml		3/15/2017	3:50 PM	AT 3/17/2017
S18	18 - Method Blank 1	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017
S18	18 - Method Blank 1	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017
S19	19 - Method Blank 2	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017
S19	19 - Method Blank 2	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017
S20	20 - Negative Control	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017
S20	20 - Negative Control	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/15/2017	10:00 AM	AT 3/17/2017

Report Number: 170242R02 **Date Received:** 3/16/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170242 SEA

Client: Herrera Environmental Consultants, Inc

Report Number: 170242R02 **Date Received:** 3/16/2017

Project Name: Whatcom Septic Detection

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S21	21 - Positive Control	FECAL COLIFORM	27	CFU/ 100ml	21.8 - 32.2	3/15/2017	10:00 AM	AT 3/17/2017
S21	21 - Positive Control	E. COLI	27	CFU/ 100ml	21.8 - 32.2	3/15/2017	10:00 AM	AT 3/17/2017

Reviewed by:

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time: 3/17/17/11:26
1000 la al	2	0	0/	25	1	Chini Con
170242-01	20	0	O		1.000	
1700 110 00	2	0	0 /	125		
170242-02	20	0	0			
10.	5	4	80	1	Contraction of	- 1944 - 11 A
170242-03	50	57	114/	and the second second	1.1.1.1	
1700.10	5	6	1120			
170242-04	50	50	100 /			
1	5	D	0	Stranger A	A State State	E There are
170242-05	-50	22	44			San San Parks
1700 10 01	2	0	0 /	45		
170242-06	20	0	0	mally		
1200 110 07	5	1.2.	20 >	10 31		10 - 1 - 1 - C
1702.42-07	50	ØI	0			A CONTRACTOR
1	5	0	0	FJSuzI		- trees
170242-08	50	4	8	12041		
ITAD 110 00	5	ANT ANT	340	1085 0000	12	The second of
170242-09	50	92	184	11 2310	12000	122 10 100
In all to	5	0	0	15 113		
170242-10	50	2	4	4 8 3121		
the states the	5	2	40	195 ~	x	10 8 10
170242-11	50	19	38	0 0 3120	1	1000
inco la l	-5	0	0	0 T	r	
170242-12	50		0 >	6 8 32		
Lab Duplicate	10(25)	0	0	1 Section of the	Y- 4634 30	1. 1. S.
Negative Control	100	0	0		- · · · ·	
Positive Control	100	27	27	A CONTRACT	1	

Calculation of Results

 $\frac{Colonies}{100\,mL} = \frac{Colonies\,counted}{mL\,SampleFiltered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100 \, mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

Fecal Analysis Bench Sheet

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time: 3161711:20	End Date/Time:
170242-13	20	0	0	5 831245		
170242-14	2 20	0		9 J 5 5 1224		
170242-15	5	0	0 >	95 4 40413		
1702.42-16	5	504	0 >	75 8 312	17	
170242.17	0.01	150 880	1500000	J 82 3/24	12	
170242-17	1.0	TNTC	TNTC		1	V
1 3 C 40						
A						
Lab Duplicate Negative Control	427-12 - 12 - 13		2012 228			
Positive Control	(*				Julio Anna Anna	

Calculation of Results

 $\frac{Colonies}{100 mL} = \frac{Colonies \ counted}{mL \ Sample Filtered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

E. coli Analysis Bench Sheet

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
170242-01	2	0	<50	1	3 N. 17 1 30 MM	3/17/17 11:3014
	20	0	<5 /			2010
170242-02	2	0	<50			
	20	0	<5 /	1		
170242-03	5	4	80	1. Januar Marine	1.11	1 1 2
	50	57	114	1		1
170242-04	5	0	<20			
	50	4	8	75 8		1.2
170242-05	5	0	<20			
	50	7	14	135 8	14.1	12 1 2 2 2
170242-06	2	Ö	<50			
	20	0	<5 /			1
170242-07	5	and the second second	20	1. All	24121-2	199 Marson 21
+ -	50	1	2	45 4		1000
170242-08	5	0	<20	-	1.2	
	50	4	8	758		
170242-09	5	16	320	1		1.
	50	89	178	19138	1.17 新闻的	1-
170242-10	5	0	<20	- m		
and the second	50	2	4	45 8		1.2.2
170242-11	5	2	40			
	50	19	38	385 8	and a second	
170242-12	5	0	<20	- and	1	1.2.2.2.
and the second second	50	1	2_	238	¥	N .
Lab Duplicate	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ALL NO.	Carlo I.	1		A. Canada
Negative Control						
Positive Control				1	11	

Calculation of Results

 $\frac{Colonies}{100\,mL} = \frac{Colonies\,counted}{mL\,SampleFiltered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies\,counted}{\sum mL\,sample\,filtered} \times 100$

E. coli Analysis Bench Sheet

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
170242-13	2	0	<50		3/10/17 11-30MM	3 17 17 11 30 PM
+, UL IL 10	20		5	55 90	1	1
170242-14	2	0	<50	1		
	20	2	10	95 40		
170242-15	5	0	<20			
	50	5	10	958		
170242-16	5	0	<20		1	
	50	- 4	8	73 4		
170242-17	0.01	150	1500000	T san		
	0.1	680	880000		1	
170242-17	1.0	TNTC			1	V
11 ⁻¹ -1-1-1						
		•				
Lab Duplicate-57	25	0				-
Negative Control	100	0				
Positive Control	100	27				

Calculation of Results

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, SampleFiltered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100 \, mL} = \frac{\sum Colonies \, counted}{\sum mL \, sample \, filtered} \times 100$

7619 6 th Seattle, V Office (206) Fax (206) mail@la www.lat	789-8424 bcor.net bcor.net	Client: Herveva Address: $Z200 G^{+}$ City, State, Zip: Sea H Contact: Rob Z Phone: $206 787 82$ Email: For $rZ1SE$ Other Info:	le, ise+ 62 ette(WA Fe Fax: Dhe	rres	ratr	<u>TC.C</u>			E. c E. c E. c Hete Bacc MP/ Cryj Giar Turl Micc Othe	oli / Feca crotrophi terial ID A Analys otosporid dia dia bidity robial Lin er	form MP I Colifor c Bacteri is ium mit Test	ma	Turnaround Time: 7 days 5 days 3 days 48 hours 24 hours* (Not all TATs are available for all analysis types)	
Sample		com Septic Deter	<u>CTION</u>	Project Sample		ber:	<u>(6</u> – Sam			mple Ti		[326 RZ
Number			Water	Swab	Air	Other	Da	~	On	Off	Total	Start	w Rate () End	pm) Avg	Volumes
CI	Cont	rol - lake	X				3/15	117	0941						2,20ml
C2	Cont	vol -lake	1	-			1	<u>.</u>	0950	·····					2,20mL
ID	Disc	harge water				1			1050						5,50 mL
20		1							1105						<u></u>
3D	1 3 3	\mathbf{V}							1120						
41	Lake	water						· · · · · ·	1135			:			2,20 mL
5D	Disch	arge water							1215						5,50mL
GD				-					1226						1
7D	-								1251						
80			Y				Y		1303	·					1 J
To be com	pleted by Jab): Receipt Ten	iperatu	re 2.	6	°C	R	cein	t Con	lition	Goo	4			
	d Phone E E w you are agreeing	Final Result -mail \Box Verbal By \Box for to comply with Lab/Cor's Requests, \overline{t} Date: $3/16/17$ \overline{t} Date: $3/16/17$	ix 🖸 Ph Tenders an Time: 💆	one [] I Contract	s.	Relinqu Receive	ished by	llardç	opy / Inv		úled: I By: E		thead for	TATs of Time: _	24hrs or less

	Bacterial Chain of Custody Record	170242	Page Zof 2
<i>Lab/Cor, Inc</i> 7619 6 th Ave NW Seattle, WA 98117 Office (206) 781-0155 Fax (206) 789-8424 mail@labcor.net <i>www.labcor.net</i>	Client: Herrera Address:	Analytical Protocol: E. coli P/A E. coli / Coliform MPN E. coli / Fecal Coliform Heterotrophic Bacteria Bacterial ID MPA Analysis Cryptosporidium Giardia Turbidity Microbial Limit Test Other	Turnaround Time: 7 days 5 days 3 days 48 hours 24 hours* (Not all TATs are available for all analysis types)

Project Na	me:		Project	ber:		P.O. Number:							
Sample	Sample Description		Sample	Туре		Sample	Sa	imple Ti	me	Flow	w Rate (l	pm)	Dilution
Number		Water	Swab	Air	Other	Date	On	Off	Total	Start	End	Avg	Volume
90	Discharge Water	X				3/15/17	1318				:		5,50 ml
100	V .	1				Ĩ	1335						550ml
IIL	Lake Water						1409	1356					3,30m
12L	L						1420	1409					2,20ml
130	Discharge Water				· · ·		1420	2					5,50 mL
14D	Ł						1441	2					5,50 ml
DSS	Row Sewage (high leve)					*	1550					·	Oolg Iml
	,					244 							
(To be co	mpleted by lab): Receipt Ter	mperafi	ure 2.	6	°C	Recei	pt Cor	dition	6100	bd			
Internal La													
Prelim Relea	ised: Final Res Phone E E-mail Verbal By E I		Contraction and a second second	12000		Harc		ivoice M. Reviewe					
Automotive Automotive	low you are agreeing to comply with Lab/Cor's Requests		Constant Andreast auto-							* Call	ahead fo	r TATs o	f 24hrs or less
Relinquished	1 by: 111 Jack Date: 3/16/17	Time:	0825	-	Relinq	uished by:				Date:		Time:	· · · · · · · · · · · · · · · · ·
Received by:	Cetinge Date: 3/10/1-	7 Time: (0830	<u>)</u>	Receiv	ed by:							
<u>, / </u> ,													

01 April 2017

Rob Zisette Herrera Environmental Consultants 2200 6th Avenue, Suite 1100 Seattle, WA 98121

RE: Lake Whatcom North Shore Testing

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17C0308 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Mark Harris, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:)700308	Turn-around		Std.			Page:	1	of	2			Analyti	cal Resources, Incorporated cal Chemists and Consultants outh 134th Place, Suite 100
ARI Client Company: Hervera		Phone:	441 9	080	S	Date:	6117	Ice Prese	ent?		3	Tukwila	, WA 98168 5-6200 206-695-6201 (fax)
Client Contact: Rob Zis	ette					No. of Coolers:		Coole Temp	er s:				rilabs.com
Client Project Name: Lake Who	itcon	1							Analysis	Requested		1	Notes/Comments
Client Project #: 16-0326326-000	Samplers:	3C/RT	2			de/ nide	TL-UT	Total	onus				How analyses until we receive bacteria result
Sample ID	Date	Time	Matrix	No. Co	ontainers	Enloride (browie	Hissphered Phrosphered	bros					Bacteria result Bazof fue 17 samples will not
CI	3/15/17	13180	941 W	1		X	X						be analyzed,
CA		1335	0950			X	X						
ID		1356	1050			×	X						
20		1409	1105			X	X					1.	
30		1420	1120			X	X						
4L		1440	1135			X	X						
5D		1550	1215			X	X						
60		1226				X	Х						
70		1251				X	X						
80	V	1303	\checkmark		/	X	X						
Comments/Special Instructions	Relinquished by (Signature)	MO	at	Receive (Signat		Daul	Mal		Relinquished	l by:		Received by (Signature)	
Phosphones tope	Printed Name:	a Cata	arra	Printed		Daul	Mar	~	Printed Nam	e:		Printed Nam	e:
Cittereprise to	Company:	iveva		Compa	ny:	ARI			Company:			Company:	
digestion	Date & Time: 31161		1505	Date &	Time:	116/20		5 05	Date & Time			Date & Time	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for sald services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around		std		Page:	2	of	3		Analyti	ical Resources, Incorporated ical Chemists and Consultants outh 134th Place, Suite 100
ARI Client Company: Herve	va	Phone:			Date:		Ice Prese	ent?		Tukwil	a, WA 98168 95-6200 206-695-6201 (fax)
Client Contact: Rob Z		e			No. of Coolers:	R	Coole Temp				rilabs.com
Client Project Name: LaKe	uha	tcon)				BN		Requested	1	Notes/Comments
Client Project #: 116-0163210-000	1.0	GCIR			iche	ditte	Fotosly	ern			Hold analyses until bacteria
Sample ID	Date	Time	Matrix	No. Containers	Chloride browid	Phone die	6No20				Vesu its received 3 15 of the 17 samples will
90	3115/17	1318	W		X	×					be analyzed.
IDD	1	1335	1	1	×	X					
11 L		1356			X	X					
122		1409			X	×					
13D		1420			X	×		1			
14 D		1440	V		X	X					
OSS		1550	*		X	×					
						0	0		19		
					D	Ca	~	3/18/			
										-	
Comments/Special Instructions	Relinquished by: (Signature)	Me	t	Received by: (Signature)	Dave	Ma	L	Relinquished	l by:	Received by (Signature)	<i>y</i> :
*- Septic system Sample	Printed Name:	Pata	107.	Printed Name:	David	Mor		Printed Nam	e:	Printed Nar	ne:
Total dissolved St	Gina Company:	Lara	ira	Company:	AR		K	Company:		Company:	
Filtered prior to:	Date & Time: 31611	reva	505	Date & Time:			05	Date & Time	:	Date & Time	9:

Ligits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for sald services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants

Cooler Receipt Form

ARI Client: Harrera		Proi	ect Name: Lalle	Whatco	0	
COC No(s):	NA					
Assigned ARI Job No: 170308			vered by: Fed-Ex UP			
Preliminary Examination Phase:	-	1120	king No:			(NA)
Were intact, properly signed and dated custody sea	als attached to	o the outpid				\sim
Were custody papers included with the cooler?					YES	(NO)
					YES	NO
Were custody papers properly filled out (ink, signed Temperature of Cooler(s) (°C) (recommended 2.0-6 Time:	d, etc.) 6.0 °C for che	emistry)	4.2		YES	NO
If cooler temperature is out of compliance fill out for	m 00070F			Temp Gun II	- h005	271.
Cooler Accepted by: P M		Date:	3/16/2017	Time: 15	4	-16
	stody forms		all shipping docum		-3	-
Log-In Phase:		and attach	an sinpping docum	IENIS		
Was a temperature blank included in the cooler?					YES	(NO)
What kind of packing material was used?	Bubble Wrap	Wet Ice	Gel Packs Baggies	Foam Block Paper	Other:	5
Was sumicient ice used (if appropriate)?				NA	(YES)	NO
Were all bottles sealed in individual plastic bags?					YES	NO
Did all bottles arrive in good condition (unbroken)? .					(YES)	NO
Were all bottle labels complete and legible?					YES	
Did the number of containers listed on COC match	with the numb	per of conta	iners received?		6	NO
Did all bottle labels and tags agree with custody pap	pers?				YES	NO
Were all bottles used correct for the requested analy	vses?				YES	NO
Do any of the analyses (bottles) require preservation	n? (attach pro			-	YES	NO
Were all VOC vials free of air bubbles?	in lanaon pre	eservation s	neet, excluding VOC	s) NA	YES	NO
Was sufficient amount of complement in each battle	•••••••			(NA)	YES	NO
Was sufficient amount of sample sent in each bottle	······	·····			YES	NO
Date VOC Trip Blank was made at ARI				(NA)		
Was Sample Split by ARI : (NA) YES Dat	te/Time:		_ Equipment:		Split by:	
Samples Logged by:MR.H.	-	-1				
	Date:			me: 9:01	2	
アーサー ** Notify Pro 3/21/17	ject Manage.	r of discre	pancies or concerns	S **		
						-
Sample ID on Bottle Sample ID	on COC	S	ample ID on Bottle	Sam	ple ID on C	oc
IID IIL		1				
	-					
	-					
Additional Notes, Discrepancies, & Resolutions:	C #	20.00			1	
For sample leD the Sam	phing	Jate	on bottle	was 3/15	114, C	OC
date was 3/15/17.	0					
By: B.H. Date: 3/2//1	7					
Small Air Petholas		Small → "	sm" (<2 mm)			
=2mm 2-4 mm >4 m			$s \rightarrow "pb" (2 \text{ to} < 4 \text{ m})$	- 1		
° . 0 0 0	à			111.)		
	9		lg" (4 to < 6 mm)			
		Headspace	\rightarrow "hs" (>6 mm)			

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000

Reported: 01-Apr-2017 09:12

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Rob Zisette

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C1	17C0308-01	Water	15-Mar-2017 09:41	16-Mar-2017 15:05
02	17C0308-02	Water	15-Mar-2017 09:50	16-Mar-2017 15:05
D	17C0308-03	Water	15-Mar-2017 10:50	16-Mar-2017 15:05
D	17C0308-04	Water	15-Mar-2017 11:05	16-Mar-2017 15:05
D	17C0308-05	Water	15-Mar-2017 11:20	16-Mar-2017 15:05
L	17C0308-06	Water	15-Mar-2017 11:35	16-Mar-2017 15:05
D	17C0308-07	Water	15-Mar-2017 12:26	16-Mar-2017 15:05
D	17C0308-08	Water	15-Mar-2017 12:51	16-Mar-2017 15:05
D	17C0308-09	Water	15-Mar-2017 13:03	16-Mar-2017 15:05
D	17C0308-10	Water	15-Mar-2017 13:18	16-Mar-2017 15:05
1L	17C0308-11	Water	15-Mar-2017 13:56	16-Mar-2017 15:05
2L	17C0308-12	Water	15-Mar-2017 14:09	16-Mar-2017 15:05
3D	17C0308-13	Water	15-Mar-2017 14:20	16-Mar-2017 15:05
4D	17C0308-14	Water	15-Mar-2017 14:40	16-Mar-2017 15:05
SS	17C0308-15	Water	15-Mar-2017 15:50	16-Mar-2017 15:05
D	17C0308-16	Water	15-Mar-2017 12:15	16-Mar-2017 15:05
0D	17C0308-17	Water	15-Mar-2017 13:35	16-Mar-2017 15:05

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Analytical Report

Reported: 01-Apr-2017 09:12

Case Narrative

Client: Herrera Environmental Consultants **Project:** Lake Whatcom North Shore Testing **Workorder:** 17C0308

Sample receipt

17 samples were received 16-Mar-2017 15:05 under ARI work order 17C0308. For details regarding sample receipt, please refer to the Cooler Receipt Form. 15 samples were analyzed for anions and total phosphorous as requested.

Wet Chemistry

These samples were prepared and analyzed within the recommended holding times.

All initial and continuing calibrations were within method requirements.

A small amount of phosphorous was detected in the method blank (MB) associated with the 3/30/17 analyses of samples '11L' and 'OSS'. Since the concentration of total phosphorous measured in sample 'OSS' was substantially greater than the amount found in the MB, the contribution to the result from laboratory contamination should be considered negligible. The concentration of total phosphorous measured in sample '11L' was comparable to that found in the MB. Since the source of the contamination is uncertain, and repeated analyses have yielded similar results, no corrective actions were taken. This sample can be re-prepared and re-analyzed upon request. No other target compounds were detected in the MBs.

The percent recoveries for all compounds were within acceptable QC limits for the LCSs.

Matrix spikes (MSs) were prepared and analyzed in conjunction with sample 'C1'. The percent recoveries were within acceptable QC limits for the MSs.

Matrix duplicates (MDs) were prepared and analyzed in conjunction with sample 'C1'. The RPD for total phosphorous was high following the analysis of the MD. Since the percent recovery for total phosphorous was within acceptable QC limits for the the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD. No corrective actions were taken. The RPDs for both anions were within acceptable QC limits for the MD.

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

C1 17C0308-01 (Water) Sampled: 03/15/2017 09:41

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: 5						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/21/2017 20			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	2.68	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2. Final Volume: 5						
Analytical Method: SM 4500-P E-99		Instrument: UV1	800-2		А	nalyzed: 03/2	27/2017 13:31	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	ND	mg-P/L	U	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

C2

17C0308-02 (Water) Sampled: 03/15/2017 09:50

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/21/2017 21:			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	2.68	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulfa Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :						
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:33	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	ND	mg-P/L	U	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

Notes

U

Notes

1D

17C0308-03 (Water) Sampled: 03/15/2017 10:50

Wet Chemistry Preparation Method: No Prep Wet Chem Sample Preparation: Preparation Batch: BFC0546 Sample Size: 5 mL Prepared: 03/21/2017 13:21 Final Volume: 5 mL Analytical Method: EPA 300.0 Instrument: DX2100 Analyzed: 03/21/2017 22:13 Reporting Limit Analyte CAS Number Dilution Result Units 24959-67-9 0.100 ND mg/L Bromide 1 Reporting Dilution Limit CAS Number Units Analyte Result Chloride 16887-00-6 1 0.100 2.63 mg/L Sample Preparation: Preparation Method: SM 4500-P B-5 Persulfate Preparation Batch: BFC0652 Sample Size: 25 mL Prepared: 03/25/2017 10:38 Final Volume: 50 mL Analytical Method: SM 4500-P E-99 Instrument: UV1800-2 Analyzed: 03/27/2017 13:33

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus	7723-14-0	1	0.00800	0.0360	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

2D

17C0308-04 (Water) Sampled: 03/15/2017 11:05

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/21/2017 22			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	3.47	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulfa Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :						
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:33	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	0.0520	mg-P/L		

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

3D

17C0308-05 (Water) Sampled: 03/15/2017 11:20

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :					
Analytical Method: EPA	300.0	Instrument: DX	2100		A	nalyzed: 03/2	21/2017 22:5
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.16	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :					
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:34
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0480	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

4L

17C0308-06 (Water)

Sampled: 03/15/2017 11:35

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: 5						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/21/2017 23			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	2.59	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2. Final Volume: 5						
Analytical Method: SM 4500-P E-99		Instrument: UV1	800-2		A	nalyzed: 03/2	27/2017 13:34	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	0.0180	mg-P/L		

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

6D

17C0308-07 (Water) Sampled: 03/15/2017 12:26

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/21/2017 23:			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	1.15	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :						
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:34	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	0.0240	mg-P/L		

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

7D 17C0308-08 (Water) Sampled: 03/15/2017 12:51

Wet Chemistry Preparation Method: No Prep Wet Chem Sample Preparation: Preparation Batch: BFC0546 Sample Size: 5 mL Prepared: 03/21/2017 13:21 Final Volume: 5 mL Analytical Method: EPA 300.0 Analyzed: 03/21/2017 23:53 Instrument: DX2100 Reporting Limit Analyte CAS Number Dilution Result Units Notes 24959-67-9 0.100 ND Bromide U 1 mg/L Reporting Limit CAS Number Dilution Units Analyte Result Notes mg/L Chloride 16887-00-6 1 0.100 2.41 Sample Preparation: Preparation Method: SM 4500-P B-5 Persulfate Preparation Batch: BFC0652 Sample Size: 25 mL Prepared: 03/25/2017 10:38 Final Volume: 50 mL Instrument: UV1800-2 Analyzed: 03/27/2017 13:35 Analytical Method: SM 4500-P E-99 Reporting CAS Number Dilution Limit Units Analyte Result Notes Total Phosphorus 7723-14-0 0.00800 0.0500 1 mg-P/L

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

8D

17C0308-09 (Water) Sampled: 03/15/2017 13:03

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :						
Analytical Method: EPA	300.0	Instrument: DX	2100		Analyzed: 03/22/2017 00			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	2.08	mg/L		
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :						
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		А	nalyzed: 03/2	27/2017 13:3	
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Total Phosphorus		7723-14-0	1	0.00800	0.0560	mg-P/L	•	

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

9D

17C0308-10 (Water) Sampled: 03/15/2017 13:18

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :					
Analytical Method: EPA 300.0		Instrument: DX	2100		А	nalyzed: 03/2	22/2017 01:14
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.82	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :					
Analytical Method: SM 4500-P E-99		Instrument: UV	800-2		А	nalyzed: 03/2	27/2017 13:37
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0140	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

11L 17C0308-11 (Water) Sampled: 03/15/2017 13:56

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :					
Analytical Method: EPA	300.0	Instrument: DX	2100		А	nalyzed: 03/2	22/2017 01:34
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.63	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-4 Strong Preparation Batch: BFC0762 Prepared: 03/29/2017 18:21	Acid Sample Size: 2 Final Volume: :					
Analytical Method: SM	4500-P E-99	Instrument: UV	1800-2		А	nalyzed: 03/	30/2017 15:57
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0240	mg-P/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

12L 17C0308-12 (Water) Sampled: 03/15/2017 14:09

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: DX	2100		A	nalyzed: 03/2	22/2017 01:54
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	3.05	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :					
Analytical Method: SM	4500-P E-99	Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:3
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0300	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

13D

17C0308-13 (Water) Sampled: 03/15/2017 14:20

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546	Sample Size: 5					
	Prepared: 03/21/2017 13:21	Final Volume:	5 mL				
Analytical Method: EPA	300.0	Instrument: DX	2100		А	nalyzed: 03/2	22/2017 02:14
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.96	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf	ate					
1 1	Preparation Batch: BFC0652	Sample Size: 2	5 mL				
	Prepared: 03/25/2017 10:38	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV	800-2		A	nalyzed: 03/2	27/2017 13:38
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0320	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

14D

17C0308-14 (Water) Sampled: 03/15/2017 14:40

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume: :					
Analytical Method: EPA	300.0	Instrument: DX	2100		А	nalyzed: 03/2	22/2017 02:34
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.70	mg/L	
Sample Preparation:	Preparation Method: SM 4500-P B-5 Persulf Preparation Batch: BFC0652 Prepared: 03/25/2017 10:38	ate Sample Size: 2 Final Volume: :					
Analytical Method: SM	4500-P E-99	Instrument: UV	800-2		А	nalyzed: 03/2	27/2017 13:38
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0160	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

OSS

17C0308-15 (Water)

Sampled: 03/15/2017 15:50

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFC0546 Prepared: 03/21/2017 13:21	Sample Size: 5 Final Volume:					
Analytical Method: EPA	. 300.0	Instrument: DX	2100		А	nalyzed: 03/2	22/2017 02:55
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
Sample Preparation:	Preparation Method: SM 4500-P B-4 Strong	Acid					
* *	Preparation Batch: BFC0762	Sample Size: 2	5 mL				
	Prepared: 03/29/2017 18:21	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV	1800-2		А	nalyzed: 03/3	30/2017 16:00
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	50	0.400	10.3	mg-P/L	D, B

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

OSS

17C0308-15RE1 (Water) Sampled: 03/15/2017 15:50

Wet	Chemistry	

Wet Chemistry							
Sample Preparation:	Preparation Method: No Prep Wet Chem						
	Preparation Batch: BFC0546	Sample Size: 5	mL				
	Prepared: 03/21/2017 13:21	Final Volume:	5 mL				
Analytical Method: EPA	. 300.0	Instrument: DX	K2100		A	nalyzed: 03/	22/2017 12:17
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	10	1.00	46.8	mg/L	D

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

Wet Chemistry - Quality Control

Batch BFC0546 - No Prep Wet Chem

Instrument: DX2100

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFC0546-BLK1)			Prepa	ared: 21-Ma	r-2017 An	alyzed: 21-	Mar-2017 1	9:30		
Bromide	ND	0.100	mg/L							U
Chloride	ND	0.100	mg/L							U
LCS (BFC0546-BS1)			Prepa	ared: 21-Ma	r-2017 Ana	alyzed: 21-	Mar-2017 1	9:50		
Bromide	2.97	0.100	mg/L	3.00		98.8 %	75-125			
Chloride	3.02	0.100	mg/L	3.00		101 %	75-125			
Duplicate (BFC0546-DUP1)	Source:	17C0308-01	Prepa	ared: 21-Ma	r-2017 An	alyzed: 21-	Mar-2017 2	1:12		
Bromide	ND	0.100	mg/L		ND					U
Chloride	2.67	0.100	mg/L		2.68			0.23	20	
Matrix Spike (BFC0546-MS1)	Source:	17C0308-01	Prepa	ared: 21-Ma	r-2017 An	alyzed: 21-	Mar-2017 2	1:32		
Bromide	1.89	0.100	mg/L	2.00	ND	94.4 %	75-125			
Chloride	4.70	0.100	mg/L	2.00	2.68	101 %	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

Wet Chemistry - Quality Control

Batch BFC0652 - SM 4500-P B-5 Persulfate

Instrument: UV1800-2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFC0652-BLK1)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:30		
Total Phosphorus	ND	0.00800	mg-P/L							U
DL (BFC0652-BLK2)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:35		
Total Phosphorus	ND	0.00800	mg-P/L							U
DL (BFC0652-BLK3)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:39		
Total Phosphorus	ND	0.00800	mg-P/L							U
LCS (BFC0652-BS1)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:30		
Total Phosphorus	0.298	0.00800	mg-P/L	0.300		99.3 %	90-110			
DL (BFC0652-BS2)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:35		
Total Phosphorus	0.298	0.00800	mg-P/L	0.300		99.3 %	90-110			
DL (BFC0652-BS3)			Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:39		
Total Phosphorus	0.298	0.00800	mg-P/L	0.300		99.3 %	90-110			
Duplicate (BFC0652-DUP1)	Source	: 17C0308-01	Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:32		
Total Phosphorus	ND	0.00800	mg-P/L		ND					U
Matrix Spike (BFC0652-MS1)	Source	: 17C0308-01	Prepa	ared: 25-Ma	r-2017 An	alyzed: 27-	Mar-2017 1	3:32		
Total Phosphorus	0.198	0.00800	mg-P/L	0.200	ND	96.1 %	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

Wet Chemistry - Quality Control

Batch BFC0762 - SM 4500-P B-4 Strong Acid

Instrument: UV1800-2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFC0762-BLK1)			Prepa	red: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	5:52		
Total Phosphorus	ND	0.00800	mg-P/L			•				U
DL (BFC0762-BLK2)			Prepa	red: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	6:02		
Total Phosphorus	0.0100	0.00800	mg-P/L							*
LCS (BFC0762-BS1)			Prepa	ared: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	5:53		
Total Phosphorus	0.320	0.00800	mg-P/L	0.300		107 %	90-110			В
DL (BFC0762-BS2)			Prepa	ared: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	6:02		
Total Phosphorus	0.328	0.00800	mg-P/L	0.300		109 %	90-110			В
Duplicate (BFC0762-DUP1)	Source:	17C0308-11	Prepa	ured: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	5:59		
Total Phosphorus	0.0300	0.00800	mg-P/L		0.0240			22.20	20	L, B
Matrix Spike (BFC0762-MS1)	Source:	17C0308-11	Prepa	ured: 29-Ma	r-2017 An	alyzed: 30-	Mar-2017 1	5:59		
Total Phosphorus	1.93	0.0400	mg-P/L	2.00	0.0240	95.4 %	75-125			D, B

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

WA-DW

Herrera Environmental Consultants	Project: Lake Whatcom North Shore Testing	
2200 6th Avenue, Suite 1100	Project Number: 16-06326-000	Reported:
Seattle, WA 98121	Project Manager: Rob Zisette	01-Apr-2017 09:12

Certified Analyses included in this Report

Ecology - Drinking Water

Analyte	Certifications		
EPA 300.0 in V	Vater		
Bromide	DoD-ELAP,WADOE,NELA	Р	
Chloride	DoD-ELAP,WADOE,WA-D	W,NELAP	
SM 4500-P E-9	99 in Water		
Total Phosph	orus WADOE,NELAP		
Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

C558

06/30/2017

Analytical Report

Herrera Environmental Consultants 2200 6th Avenue, Suite 1100 Seattle, WA 98121 Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 01-Apr-2017 09:12

Notes and Definitions

*	Flagged	value is	not	within	established	control limits	3.

B This analyte was detected in the method blank.

- D The reported value is from a dilution
- L Analyte concentration is <= 5 times the reporting limit and the replicate control limit defaults to +/- RL instead of 20% RPD
- U This analyte is not detected above the applicable reporting or detection limit.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.

4985 SW 74th Court, Miami, FL 33155 USA Tel: (1) 786-220-0379, Fax: (1) 786-513-2733, Email: info@sourcemolecular.com

Preliminary Interpretation of Human Fecal Pollution ID™ Results

Detection and quantification of the fecal Human gene biomarker for Human fecal contamination by Droplet Digital Polymerase Chain Reaction (ddPCR) DNA analytical technology

> Submitter: Herrera Environmental Consultants Date Received: March 17, 2017 Report Generated: March 22, 2017

SM #	Client #	Approximate Contribution of Human Fecal Pollution in Water Sample	Comment
SM-7C17001	C1	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C17002	C2	Not Detected	2 Human fecal biomarkers not detected
SM-7C17003	1D	Not Detected	2 Human fecal biomarkers not detected
SM-7C17004	2D	Moderate Concentration	Moderate levels of human fecal biomarker(s)
SM-7C17005	3D	Not Detected	2 Human fecal biomarkers not detected
SM-7C17006	4L	Not Detected	2 Human fecal biomarkers not detected
SM-7C17008	6D	Not Detected	2 Human fecal biomarkers not detected
SM-7C17009	7D	Not Detected	2 Human fecal biomarkers not detected
SM-7C17010	8D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C17011	9D	Low Concentration	Low levels of 2 Human fecal biomarkers
SM-7C17013	11L	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C17014	12L	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C17015	13D	Not Detected	2 Human fecal biomarkers not detected
SM-7C17016	14D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C17017	OSS	Moderate Concentration	Moderate levels of human fecal biomarker(s)

Limitation of Damages – Repayment of Service Price

It is agreed that in the event of breach of any warranty or breach of contract, or negligence of Source Molecular Corporation, as well as its agents or representatives, the liability of the company shall be limited to the repayment, to the purchaser (submitter), of the individual analysis price paid by him/her to Source Molecular Corp. The company shall not be liable for any damages, either direct or consequential. Source Molecular Corp. provides analytical services on a PRIME CONTRACT BASIS ONLY. Terms are available upon request. The sample(s) cited in this report may be used for research purposes after an archiving period of 3 months from the date of this report. Research includes, but is not limited to internal validation studies and peer-reviewed research publications. Anonymity of the sample(s), including the exact geographic location will be maintained by assigning an arbitrary internal reference. These anonymous samples will only be grouped by state / province of origin for research purposes. The client must contact Source Molecular in writing within 10 days from the date of this report if he/she does not wish for their submitted sample(s) to be used for any type of future research.

4985 SW 74th Court, Miami, FL 33155 USA Tel: (1) 786-220-0379, Fax: (1) 786-513-2733, Email: info@sourcemolecular.com

Human Fecal Pollution ID[™] Quantification

Detection and quantification of the fecal Human gene biomarker for Human fecal contamination by Droplet Digital Polymerase Chain Reaction (ddPCR) DNA analytical technology

Submitter: Herrera Environmental Consultants Date Received: March 17, 2017 Report Generated: March 22, 2017

SM #	Client #	Analysis Requested	Target	Marker Quantified (copies/100 ml)	DNA Analytical Results
SM-7C17001	C1	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C17002	C2	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17003	1D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17004	2D	Human Bacteroidetes ID 1	Dorei	1.74E+04	Present
SM-7C17005	3D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17006	4L	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17008	6D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17009	7D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17010	8D	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C17011	9D	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C17013	11L	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C17014	12L	Human Bacteroidetes ID 1	Dorei	6.00E+01	Present
SM-7C17015	13D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C17016	14D	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C17017	OSS	Human Bacteroidetes ID 1	Dorei	1.03E+03	Present
SM-7C17018	C1	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17019	C2	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17020	1D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17021	2D	Human Bacteroidetes ID 2	EPA	1.45E+03	Present
SM-7C17022	3D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17023	4L	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17025	6D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17026	7D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17027	8D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17028	9D	Human Bacteroidetes ID 2	EPA	4.05E+03	Present
SM-7C17030	11L	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17031	12L	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17032	13D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17033	14D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C17034	OSS	Human Bacteroidetes ID 2	EPA	5.50E+04	Present

ND: Not Detected

<LOQ: Detected below level of quantification

Laboratory Comments Submitter: Herrera Environmental Consultants Report Generated: March 22, 2017

Negative Results

In sample(s) classified as negative, the human-associated Bacteroidetes gene biomarker(s) was either not detected in test replicates, one replicate was detected at a concentration below 3 copies/copies/20µL and the other was not, or one replicate was detected at a concentration above 3 copies/copies/20µL and the other was not after repeated analysis. It is important to note that a negative result does not mean that the sample does not definitely have human fecal contamination. Only repeated sampling (both during wet and dry sampling events) will enable you to draw more definitive conclusions as to the contributor(s) of fecal pollution.

In order to strengthen the result, a negative sample should be analyzed further for human fecal contamination with other DNA analytical tests. A list of human fecal ID tests can be found at **www.sourcemolecular.com/human**.

Positive Results

In sample(s) classified as positive, the human-associated Bacteroidetes gene biomarker(s) was detected in both test replicates suggesting that human fecal contamination is present in the water sample(s). The biomarker(s) serve as an indicator of the targeted fecal pollution, but the presence of the biomarker does not signify conclusively the presence of that form of fecal pollution. Only repeated sampling (both during wet and dry sampling events) will enable you to draw more definitive conclusions as to the contributor(s) of fecal pollution.

Detected Not Quantified (DNQ) Results

In sample(s) classified as detected not quantified (DNQ), the human-associated Bacteroidetes biomarker was detected in both test replicates but in low, non-quantifiable quantities. This result indicates that fecal indicators associated with human were present in the sample(s) but in low concentrations.

Human Fecal Reference Samples

The client is encouraged to submit samples from the surrounding wastewater facilities and/or septic systems in order to gain a better understanding of the concentration of the human-associated fecal Bacteroidetes genetic marker as well as the concentration of the general fecal Bacteroidetes genetic marker in the geographic region of interest. A more precise interpretation would be available to the client with the submittal of such baseline samples.

Result Interpretations

Quantitative results are reported along with interpretations. Interpretations are given as "negative", "trace", "low concentration", "moderate concentration", or "high concentration" based on the concentration of the genetic markers found in the water samples.

Additional Testing

A portion of all samples has been frozen and will be archived for 3 months. The client is encouraged to perform additional tests on the sample(s) for other hosts suspected of contributing to the fecal contamination. A list of available tests can be found at www.sourcemolecular.com/tests

DNA Analytical Method Explanation

All reagents, chemicals, and apparatuses were verified and inspected beforehand to ensure that no false negatives or positives could be generated. In that regard, positive and negative controls were run to attest the integrity of the analysis. All inspections and controls tested negative for possible extraneous contaminants.

Each submitted water sample was filtered through 0.45-micron membrane filters. Each filter was placed in a separate, sterile 2ml disposable tube containing a unique mix of beads and lysis buffer. The sample was homogenized and the DNA extracted and purified.

Sample DNA was amplified and analyzed with a Bio-Rad QX200 Droplet Digital PCR System (Bio-Rad Laboratories, Inc.). Samples were processed in duplicate in a 20µL reaction containing DNA extract, forward primer, reverse primer, probe (as appropriate) and an optimized buffer solution. Absolute quantification was achieved by software Poisson Distribution Analysis.

For quality control purposes, a positive control consisting of genomic or synthetic DNA, and three negative controls consisting of PCR-grade water were run alongside the sample(s) to monitor for any false negatives or false positives.

Human Bacteroidetes ID[™] Species: B. dorei

The Human Bacteroidetes ID[™] Species: B. dorei service targets the species Bacteroides dorei. B. dorei is an anaerobe that is frequently shed from the gastrointestinal tract and isolated from human feces worldwide. It is a newly discovered species that is widely distributed in the USA.^{1,2} The human-associated marker DNA sequence is located on the 16S rRNA gene of *B. dorei.*³ The marker is the microbial source tracking (MST) marker of choice for detecting human fecal pollution due to its exceptional sensitivity and specificity. Internal validations have been conducted on hundreds of sewage, septage, human and animal host fecal samples collected from throughout the U.S and archived in the Source Molecular fecal bank. The marker has also been evaluated in both inland and coastal waters. A recent, comprehensive, multilaboratory MST method evaluation study, exploring the performance of current MST methods, concluded the B. dorei PCR assay to be the top performing human-associated assay amongst those tested. The success and consistency of this marker in numerous studies around the world^{1,3,4} makes the **Human** Bacteroidetes IDTM Species: B. dorei service the primary service for identifying human fecal pollution at Source Molecular.

Fecal Bacteroidetes are considered for several reasons an interesting alternative to more traditional indicator organisms such as E. coli and Enterococci.⁵ Since they are strict anaerobes, they are indicative of recent fecal contamination when found in water systems. This is a particularly strong reference point when trying to determine recent outbreaks in fecal pollution. They are also more abundant in feces of warmblooded animals than E. coli and Enterococci.

The Human Bacteroidetes ID[™] service is designed around the principle that fecal Bacteroidetes are found in large quantities in feces of warm-blooded animals.^{3,5,6,7,8} Furthermore, certain strains of Bacteroidetes have been found to be associated with humans.^{3,6} As such, these bacterial strains can be used as indicators of human fecal contamination.

Accuracy of the results is possible because the method amplifies DNA into a large number of small copies of the gene biomarker of interest. This is accomplished with small pieces of DNA called primers that are complementary and specific to the unique B. dorei DNA sequence. Through a heating process called thermal cycling, the double stranded DNA is denatured, hybridized to the complementary primers and amplified to create many copies of the DNA fragment desired. If the primers are successful in finding a site on the DNA fragment that is specific to the B. dorei DNA sequence, then billions of copies of the DNA fragment will be available, detected and quantified.

To strengthen the validity of the results, additional tests targeting other high-ranking, human-associated Bacteroidetes species should be performed, such as

Human Bacteroidetes ID[™] Species: B. stercoris,

Human Bacteroidetes ID[™] Species: B. fragilis, and

Human Bacteroidetes ID[™] Species: B. thetaiotaomicron.

¹Boehm, A., Fuhrman, J., Mrse, R., Grant, S. Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environ Sci Technol. 2003 37: 673-680.

²Bakir, M., Sakamoto, M., Kitahara, M., Matsumoto, M., Benno, Y. Bacteroides dorei sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2006 56: 1639-1641.

³ Bernhard, A., Field, K. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 2000b 66: 4571-4574.

⁴Ahmed, w., Masters, N., Toze, S. Consistency in the host specificity and host sensitivity of the Bacteroides HF183 marker for sewage pollution tracking. Lett. Appl. Microbiol. 2012 55: 283-289.

⁵ Scott, T., Rose, J., Jenkins, T., Farrah, S., Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.

⁶ Bernhard, A., Field, K. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 2000a 66: 1587-1594. ⁷ Eccentry L. Voytek M. A Comparison of Bacteroides-Prevetella 16S rPNA Constic Markers for Fecal Samples from Different Animal

Human Bacteroidetes ID[™]: EPA Developed Assay

The Human Bacteroidetes ID[™]: EPA Developed Assay service targets a functional gene biomarker in Bacteroidales-like anaerobic bacteria that is present in high concentrations in the human gut. The U.S. Environmental Protection Agency (U.S. EPA) was the first to target the biomarker using Polymerase Chain Reaction (PCR) technology in order to detect ground and surface waters impacted by human fecal pollution.¹ Since it's development, the assay has been used succesfully around the U.S to identify fecal pollution originating from human sources, such as sewage and septage wastewaters.

The U.S. EPA Developed assay has been shown to be highly associated with human fecal pollution. It has successfully been validated in multiple nationwide studies using at least 300 individual reference fecal material from 22 different animal species known to commonly contaminate environmental waters.^{1,2} A reported 99.2% specificity to human fecal material makes this one of the leading assays to confirm the presence of fecal contamination that is of human origin.¹ The *Bacteroidales*-like bacteria is widely distributed. It was detected in 100% of hundreds of sewage and human reference fecal samples collected from more than 20 human populations, making it highly sensitive. Internal validations have also been conducted on hundreds of wastewater, human and animal host fecal samples archived in the Source Molecular fecal bank.

Fecal anaerobic bacteria are considered for several reasons an interesting alternative to more traditional fecal indicator organisms such as E. coli and Enterococci.³ Since they are strict anaerobes, they are indicative of recent fecal contamination when found in water systems.³ This is a particularly strong reference point when trying to determine recent outbreaks in fecal pollution. They are also more abundant in feces of warm-blooded animals than E. coli and Enterococci.

The Human Bacteroidetes ID[™]: EPA Developed Assay service is designed around the principle that fecal Bacteroidales-like bacteria are found in large quantities in feces of warm-blooded animals.^{4,5} Furthermore, certain strains have been shown to be associated with humans.^{4,5} As such, these bacterial strains can be used as indicators of human fecal contamination. An advantage of the Human Bacteroidetes IDTM service is that the entire portion of water sampled is filtered to concentrate bacteria. As such, this method avoids the randomness effect of culturing and selecting bacterial isolates. This is an advantage for highly contaminated water systems with potential multiple sources of fecal contamination.

Accuracy of the results is possible because the method amplifies DNA into a large number of small copies of the gene biomarker of interest. This is accomplished with small pieces of DNA called primers that are complementary and specific to the unique B. dorei DNA sequence. Through a heating process called thermal cycling, the double stranded DNA is denatured, hybridized to the complementary primers and amplified to create many copies of the DNA fragment desired. If the primers are successful in finding a site on the DNA fragment that is specific to the B. dorei DNA sequence, then billions of copies of the DNA fragment will be available, detected and quantified.

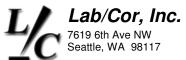
To strengthen the validity of the results, additional tests targeting other high-ranking, human-associated Bacteroidetes species should be performed, such as Human Bacteroidetes ID[™] Species: *B. dorei*, Human Bacteroidetes ID[™] Species: *B. fragilis*, and Human Bacteroidetes ID[™] Species: *B. stercoris*

¹ Shanks, O., Kelty, C., Sivaganesan, M., Varma, M. and Haugland, R. **Quantitative PCR for Genetic Markers of Human Fecal Pollution**. Appl. Environ. Microbiol. 2009 75: 5507-5513.

²Layton, B., Cao, Y., Ebentier, D., Hanley, K., Ballesté, E., Brandão, J., et al. Performance of Human Fecal Anaerobe-Associated PCR-Based Assays in a Multi-Laboratory Method Evaluation Study. Water Research. 2013 In Press. ³Scott, T., Rose, J., Jenkins, T., Farrah, S. and Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.

 ³ Scott, T., Rose, J., Jenkins, T., Farrah, S. and Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.
 ⁴ Bernhard, A., Field, K. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 2000a 66: 1587-1594.
 ⁵ Bernhard, A., Field, K. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella

genes encoding 16S rRNA. Appl Environ Microbiol 2000b 66: 4571-4574



Data Quality Assurance Worksheet

			By	G. Catarra				
Project Name/No./Client: Lake Whatcom / 16-06	5326-000 / LWWSD.		Date	1/26/2017	Page	1	of	1
Laboratory/Parameters: LabCor, Inc. / fecal ba	cteria and E. coli; ARI / TP, Cl/Br; Sourc	ce Molecular / MST	Checked:	initials				
Sample Date/Sample ID: <u>3/15/2017 / 17 samples</u>	3			date				

		Pre-preser Holding 7 (hours	Fimes	Total Ho Times (d	U	Method <u>Blanks</u>	Matrix Spikes/ Surrogate Recovery (%)		Lab Control Samples Recovery (%)		1	Lab Duplicates RPD (%)		licates %)	
Parameter	Completeness/ Methodology	Reported	Goal	Reported	Goal	Reporting Limit	Reported	Goal	Reported	Goal	Reported	Goal	Reported	Goal ¹	ACTION
Fecal coliform	OK/ SM9222D	NA	NA	1	≤1	≤1.0 2 CFU /100ML	NA	NA	NA	NA	5D NC	≤35	NA	NA	STATIONS 5-14, OSS "J" DUE TO PLATE COUNTS. RESULTS CALCULATED PER METHOD.
						≤1.0									STATION 2-3, 5-14, OSS "J"
E. coli	OK/ SM9222D	NA	NA	1	≤1	2	NA	NA	NA	NA	5D NC	≤35	NA	NA	DUE TO PLATE COUNTS. RESULTS CALCULATED PER METHOD.
Total Phosphorus	OK / EPA 365.1	NA	NA	12	≤28	≤8.0 − 10 8.0 μg/L	95-96	±20	99-109	±10	NC, D = 6	≤20	NA	NA	11L "J" DUE TO MB CONTAMINATION.
Chloride	OK / EPA 300.0	NA	≤12	6	≤28	≤0.1 0.1 mg/L	101	±20	101	±10	2.7	≤20	NA	NA	None
D 11	OK/		N 7.4	-	- 100	≤0.1	94	. 20	99	. 10	NG	100		NA	None
Bromide	EPA 300.0	NA	NA	6	≤28	0.1 mg/L	94	±20	99	±10	NC	≤ 20	NA		
B. Dorei	OK /		≤48		NA	≤0.01	NA	NA	NA	NA	NA	≤ 30	NA	NA	NONE
D. Dolei	Digital qPCR		40		1111	3	141	1111	1111	1111	1111	cov	nn.		
EPA Assay	OK / Digital qPCR		≤48		NA	≤0.05 3	NA	NA	NA	NA	NA	≤ 30 cov	NA	NA	NONE

NA – not applicable or not available; NC – not calculable due to one or more values below the detection limit; NS – field duplicate not sampled.

Analysis Report Cover

Phone: (206) 781-0155 http://www.labcor.net

Report Number: 170293R01 Report Date: 3/31/2017

Final Report

A Professional Service Corporation in the Northwest

		III rojessional service et	siporation in the Northwest
Job Number: 170)293 SEA		Rep
Client: Her	rera Environmental Co	onsultants, Inc	-
Address: 220	0 Sixth Avenue		
Suit	te 1100		
Sea	ttle, WA 98121		
Project Name: Lake	e Whatcom North Shore	e Water Testing	
Project No.: 16-0	6326-000		
PO Number:			
PWS ID:			
Reference No.:			
Enclosed please find	results for samples sub	mitted to our laboratory. A list of s	amples and analyses follows:
Lab/Cor Sample #	Client Sample # and D	escription Analysis	Analysis Notes
170293 - S1	C1 - Control - Lake, W 11919819	A Water ID#: SM 9222D G1c1- Coliform/ E.coli - (

Lab/Cor Sample #	Client Sample # and Description	Analysis	Analysis Notes	Date Received
170293 - S1	C1 - Control - Lake, WA Water ID#: 11919819	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S2	C2 - Control - Lake, WA Water ID#: 11919820	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S3	1L - Lake Water, WA Water ID#: 11919821	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S4	2D - Discharge Water, WA Water ID#: 11919822	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S5	3D - Discharge Water, WA Water ID#: 11919823	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S6	4D - Discharge Water, WA Water ID#: 11919824	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S7	5D - Discharge Water, WA Water ID#: 11919825	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S8	6D - Discharge Water, WA Water ID#: 11919826	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S9	7D - Discharge Water, WA Water ID#: 11919827	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S10	8D - Discharge Water, WA Water ID#: 11919828	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S11	9D - Discharge Water, WA Water ID#: 11919829	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S12	10D - Discharge Water, WA Water ID#: 11919830	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S13	11D - Discharge Water, WA Water ID#: 11919831	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S14	12D - Discharge Water, WA Water ID#: 11919832	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S15	13D - Discharge Water, WA Water ID#: 11919833	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S16	14D - Discharge Water, WA Water ID#: 11919834	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU	High Confluent Growth Present	3/30/2017
170293 - S17	0SS - (Raw Sewage), WA Water ID#: 11919835	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S18	15D - Discharge Water, WA Water ID#: 11919836	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S19	NEGCTRL - , WA Water ID#: 11919837	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S20	POSCTRL -, WA Water ID#: 11919838	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017
170293 - S21	Blank - Run #1, WA Water ID#: 11919839	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU		3/30/2017

Lab/Cor, Inc. 7619 6th Ave NW Seattle, WA 98117

Final Report

Phone: (206) 781-0155 http://www.labcor.net

A Professional Service Corporation in the Northwest

ob Number: 170 Client: He	0293 SEA rrera Environmental Consultants, Inc		Report Number: 170293R01 Report Date: 3/31/2017
roject Name: Lak	e Whatcom North Shore Water Testing		
170293 - S22	Blank - After Run #10, WA Water ID#: 11919840	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU	3/30/2017
170293 - S23	Blank - Final Run, WA Water ID#: 11919841	SM 9222D G1c1- Fecal Coliform/ E.coli - CFU	3/30/2017

SM 9222D G1c1- The presence of Fecal Coliform and E. coli from waters and/or environmental sources are tested using the following standard Fecal Coliform/ methods: E.coli - CFU

SM9222 D&G1c1:

Qualitative and Quantitative analysis of Fecal Coliforms and E. coli using a Membrane Filtration procedure begins with selecting a volume of sample that will yield optimal colony counts. Several aliquots are filtered onto sterile, gridded, 0.1 um MCE filters. The filters are then placed onto a culture dish containing fecal coliform selective medium. The samples are then incubated in a water bath at 44.5 \pm 0.2 \degree for 24 \pm 2 hours.

Upon completion of incubation, positive fecal coliform colonies will produce various shades of blue while negative non-fecal coliform colonies will produce a gray to cream colored colony. Fecal Coliform densities are then calculated and reported as CFU/ 100ml.

After completion of the fecal coliform enumeration, the gridded filter is removed from the fecal coliform selective medium and transferred to a nutrient agar substrate containing 4-methylumbelliferyl-b-d-glucuronide (MUG). The samples are then incubated at $35 \pm 0.5 \,^{\circ}$ C for 4 hours. The sample is placed beneath a 365nm ultraviolet lamp to determine the presence of Escherichia coli. A colony producing a blue fluorescence around the periphery is diagnostic for the presence of E. coli.

Disclaimer The results reported relate only to the samples tested or analyzed; the laboratory is not responsible for data collected by personnel who are not affiliated with the laboratory. Results reported in both structures/cm3 and structures/mm2 are dependent on the sample volume and area. These parameters are measured and recorded by non-laboratory personnel and are not covered by the laboratory's accreditation. Interpretation of these results is the sole responsibility of the client.

If further clarification of these results is needed, please call us. Thank you for allowing the staff at Lab/Cor, Inc. the opportunity to provide you with the analytical services.

Sincerely,

ong

Ashley Tonge Technician/Analyst

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 Date Received: 3/30/2017

Client: Herrera Environmental Consultants, Inc

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S1	C1 - Control - Lake, WA Water ID#: 11919819	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:01 AM	AT 3/31/2017
S1	C1 - Control - Lake, WA Water ID#: 11919819	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:01 AM	AT 3/31/2017
S1	C1 - Control - Lake, WA Water ID#: 11919819	FECAL COLIFORM	<2	CFU/ 100ml (50mL)	0 - 7.4	3/29/2017	10:01 AM	AT 3/31/2017
S1	C1 - Control - Lake, WA Water ID#: 11919819	E. COLI	<2	CFU/ 100ml (50mL)	0 - 7.4	3/29/2017	10:01 AM	AT 3/31/2017
S2	C2 - Control - Lake, WA Water ID#: 11919820	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:12 AM	AT 3/31/2017
S2	C2 - Control - Lake, WA Water ID#: 11919820	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:12 AM	AT 3/31/2017
S2	C2 - Control - Lake, WA Water ID#: 11919820	FECAL COLIFORM	<2	CFU/ 100ml (50mL)	0 - 7.4	3/29/2017	10:12 AM	AT 3/31/2017
S2	C2 - Control - Lake, WA Water ID#: 11919820	E. COLI	<2	CFU/ 100ml (50mL)	0 - 7.4	3/29/2017	10:12 AM	AT 3/31/2017
S3	1L - Lake Water, WA Water ID#: 11919821	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:56 AM	AT 3/31/2017
S3	1L - Lake Water, WA Water ID#: 11919821	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	10:56 AM	AT 3/31/2017
S3	1L - Lake Water, WA Water ID#: 11919821	FECAL COLIFORM	10	CFU/ 100ml (50mL)	3.2 - 23.4	3/29/2017	10:56 AM	AT 3/31/2017
S3	1L - Lake Water, WA Water ID#: 11919821	E. COLI	10	CFU/ 100ml (50mL)	3.2 - 23.4	3/29/2017	10:56 AM	AT 3/31/2017
S4	2D - Discharge Water, WA Water ID#: 11919822	FECAL COLIFORM	80	CFU/ 100ml (5mL)	20 - 204	3/29/2017	11:08 AM	AT 3/31/2017
S4	2D - Discharge Water, WA Water ID#: 11919822	E. COLI	80	CFU/ 100ml (5mL)	20 - 204	3/29/2017	11:08 AM	AT 3/31/2017
S4	2D - Discharge Water, WA Water ID#: 11919822	FECAL COLIFORM	112	CFU/ 100ml (50mL)	97 - 127	3/29/2017	11:08 AM	AT 3/31/2017
S4	2D - Discharge Water, WA Water ID#: 11919822	E. COLI	112	CFU/ 100ml (50mL)	97 - 127	3/29/2017	11:08 AM	AT 3/31/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 **Date Received:** 3/30/2017

Client: Herrera Environmental Consultants, Inc

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S5	3D - Discharge Water, WA Water ID#: 11919823	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	11:21 AM	AT 3/31/2017
S5	3D - Discharge Water, WA Water ID#: 11919823	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	11:21 AM	AT 3/31/2017
S5	3D - Discharge Water, WA Water ID#: 11919823	FECAL COLIFORM	18	CFU/ 100ml (50mL)	8 - 34.2	3/29/2017	11:21 AM	AT 3/31/2017
S5	3D - Discharge Water, WA Water ID#: 11919823	E. COLI	18	CFU/ 100ml (50mL)	8 - 34.2	3/29/2017	11:21 AM	AT 3/31/2017
S6	4D - Discharge Water, WA Water ID#: 11919824	FECAL COLIFORM	160	CFU/ 100ml (5mL)	68 - 316	3/29/2017	11:36 AM	AT 3/31/2017
S6	4D - Discharge Water, WA Water ID#: 11919824	E. COLI	160	CFU/ 100ml (5mL)	68 - 316	3/29/2017	11:36 AM	AT 3/31/2017
S6	4D - Discharge Water, WA Water ID#: 11919824	FECAL COLIFORM	62	CFU/ 100ml (50mL)	50.9 - 73.1	3/29/2017	11:36 AM	AT 3/31/2017
S6	4D - Discharge Water, WA Water ID#: 11919824	E. COLI	62	CFU/ 100ml (50mL)	50.9 - 73.1	3/29/2017	11:36 AM	AT 3/31/2017
S7	5D - Discharge Water, WA Water ID#: 11919825	FECAL COLIFORM	40	CFU/ 100ml (5mL)	4 - 144	3/29/2017	11:50 AM	AT 3/31/2017
S7	5D - Discharge Water, WA Water ID#: 11919825	E. COLI	40	CFU/ 100ml (5mL)	4 - 144	3/29/2017	11:50 AM	AT 3/31/2017
S7	5D - Discharge Water, WA Water ID#: 11919825	FECAL COLIFORM	28	CFU/ 100ml (50mL)	15.4 - 47	3/29/2017	11:50 AM	AT 3/31/2017
S7	5D - Discharge Water, WA Water ID#: 11919825	E. COLI	28	CFU/ 100ml (50mL)	15.4 - 47	3/29/2017	11:50 AM	AT 3/31/2017
S8	6D - Discharge Water, WA Water ID#: 11919826	FECAL COLIFORM	360	CFU/ 100ml (5mL)	214 - 568	3/29/2017	12:10 PM	AT 3/31/2017
S8	6D - Discharge Water, WA Water ID#: 11919826	E. COLI	360	CFU/ 100ml (5mL)	214 - 568	3/29/2017	12:10 PM	AT 3/31/2017
S8	6D - Discharge Water, WA Water ID#: 11919826	FECAL COLIFORM	340	CFU/ 100ml (50mL)	313.9 - 366.1	3/29/2017	12:10 PM	AT 3/31/2017
S8	6D - Discharge Water, WA Water ID#: 11919826	E. COLI	340	CFU/ 100ml (50mL)	313.9 - 366.1	3/29/2017	12:10 PM	AT 3/31/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 Date Received: 3/30/2017

Client: Herrera Environmental Consultants, Inc

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S9	7D - Discharge Water, WA Water ID#: 11919827	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	12:33 PM	AT 3/31/2017
S9	7D - Discharge Water, WA Water ID#: 11919827	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	12:33 PM	AT 3/31/2017
S9	7D - Discharge Water, WA Water ID#: 11919827	FECAL COLIFORM	2	CFU/ 100ml (50mL)	0.2 - 11.2	3/29/2017	12:33 PM	AT 3/31/2017
S9	7D - Discharge Water, WA Water ID#: 11919827	E. COLI	2	CFU/ 100ml (50mL)	0.2 - 11.2	3/29/2017	12:33 PM	AT 3/31/2017
S10	8D - Discharge Water, WA Water ID#: 11919828	FECAL COLIFORM	120	CFU/ 100ml (5mL)	44 - 262	3/29/2017	12:55 PM	AT 3/31/2017
S10	8D - Discharge Water, WA Water ID#: 11919828	E. COLI	120	CFU/ 100ml (5mL)	44 - 262	3/29/2017	12:55 PM	AT 3/31/2017
S10	8D - Discharge Water, WA Water ID#: 11919828	FECAL COLIFORM	128	CFU/ 100ml (50mL)	112 - 144	3/29/2017	12:55 PM	AT 3/31/2017
S10	8D - Discharge Water, WA Water ID#: 11919828	E. COLI	122	CFU/ 100ml (50mL)	106.4 - 137.6	3/29/2017	12:55 PM	AT 3/31/2017
S11	9D - Discharge Water, WA Water ID#: 11919829	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	1:05 PM	AT 3/31/2017
S11	9D - Discharge Water, WA Water ID#: 11919829	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	1:05 PM	AT 3/31/2017
S11	9D - Discharge Water, WA Water ID#: 11919829	FECAL COLIFORM	16	CFU/ 100ml (50mL)	6.8 - 31.6	3/29/2017	1:05 PM	AT 3/31/2017
S11	9D - Discharge Water, WA Water ID#: 11919829	E. COLI	12	CFU/ 100ml (50mL)	4.4 - 26.2	3/29/2017	1:05 PM	AT 3/31/2017
S12	10D - Discharge Water, WA Water ID#: 11919830	FECAL COLIFORM	140	CFU/ 100ml (5mL)	56 - 288	3/29/2017	1:25 PM	AT 3/31/2017
S12	10D - Discharge Water, WA Water ID#: 11919830	E. COLI	140	CFU/ 100ml (5mL)	56 - 288	3/29/2017	1:25 PM	AT 3/31/2017
S12	10D - Discharge Water, WA Water ID#: 11919830	FECAL COLIFORM	122	CFU/ 100ml (50mL)	106.4 - 137.6	3/29/2017	1:25 PM	AT 3/31/2017
S12	10D - Discharge Water, WA Water ID#: 11919830	E. COLI	110	CFU/ 100ml (50mL)	95.2 - 124.8	3/29/2017	1:25 PM	AT 3/31/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 **Date Received:** 3/30/2017

Client: Herrera Environmental Consultants, Inc

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S13	11D - Discharge Water, WA Water ID#: 11919831	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	1:39 PM	AT 3/31/2017
S13	11D - Discharge Water, WA Water ID#: 11919831	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	1:39 PM	AT 3/31/2017
S13	11D - Discharge Water, WA Water ID#: 11919831	FECAL COLIFORM	22	CFU/ 100ml (50mL)	10.8 - 39.4	3/29/2017	1:39 PM	AT 3/31/2017
S13	11D - Discharge Water, WA Water ID#: 11919831	E. COLI	20	CFU/ 100ml (50mL)	9.4 - 36.8	3/29/2017	1:39 PM	AT 3/31/2017
S14	12D - Discharge Water, WA Water ID#: 11919832	FECAL COLIFORM	40	CFU/ 100ml (5mL)	4 - 144	3/29/2017	1:57 PM	AT 3/31/2017
S14	12D - Discharge Water, WA Water ID#: 11919832	E. COLI	40	CFU/ 100ml (5mL)	4 - 144	3/29/2017	1:57 PM	AT 3/31/2017
S14	12D - Discharge Water, WA Water ID#: 11919832	FECAL COLIFORM	44	CFU/ 100ml (50mL)	34.6 - 53.4	3/29/2017	1:57 PM	AT 3/31/2017
S14	12D - Discharge Water, WA Water ID#: 11919832	E. COLI	44	CFU/ 100ml (50mL)	34.6 - 53.4	3/29/2017	1:57 PM	AT 3/31/2017
S15	13D - Discharge Water, WA Water ID#: 11919833	FECAL COLIFORM	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	2:12 PM	AT 3/31/2017
S15	13D - Discharge Water, WA Water ID#: 11919833	E. COLI	<20	CFU/ 100ml (5mL)	0 - 74	3/29/2017	2:12 PM	AT 3/31/2017
S15	13D - Discharge Water, WA Water ID#: 11919833	FECAL COLIFORM	22	CFU/ 100ml (50mL)	10.8 - 39.4	3/29/2017	2:12 PM	AT 3/31/2017
S15	13D - Discharge Water, WA Water ID#: 11919833	E. COLI	22	CFU/ 100ml (50mL)	10.8 - 39.4	3/29/2017	2:12 PM	AT 3/31/2017
S16	14D - Discharge Water, WA Water ID#: 11919834	FECAL COLIFORM	800	CFU/ 100ml (5mL)	673.5 - 926.5	3/29/2017	2:28 PM	AT 3/31/2017
S16	14D - Discharge Water, WA Water ID#: 11919834	E. COLI	200	CFU/ 100ml (5mL)	94 - 368	3/29/2017	2:28 PM	AT 3/31/2017
S16	14D - Discharge Water, WA Water ID#: 11919834	FECAL COLIFORM	164	CFU/ 100ml (50mL)	145.9 - 182.1	3/29/2017	2:28 PM	AT 3/31/2017
S16	14D - Discharge Water, WA Water ID#: 11919834	E. COLI	82	CFU/ 100ml (50mL)	69.2 - 94.8	3/29/2017	2:28 PM	AT 3/31/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 **Date Received:** 3/30/2017

Client: Herrera Environmental Consultants, Inc

Lab/Cor Sample No.	Client Sample	Analyte Type	Analysis Result	UOM	95% Confidence Interval	Sample Date	Sample Time	Analyst
S17	0SS - (Raw Sewage), WA Water ID#: 11919835	FECAL COLIFORM	4080000	CFU/ 100ml (0.01mL)	3878009.9 - 4281990.1	3/29/2017	3:41 PM	AT 3/31/2017
S17	0SS - (Raw Sewage), WA Water ID#: 11919835	E. COLI	4080000	CFU/ 100ml (0.01mL)	3878009.9 - 4281990.1	3/29/2017	3:41 PM	AT 3/31/2017
S18	15D - Discharge Water, WA Water ID#: 11919836	FECAL COLIFORM	280	CFU/ 100ml (5mL)	154 - 470	3/29/2017	2:47 PM	AT 3/31/2017
S18	15D - Discharge Water, WA Water ID#: 11919836	E. COLI	280	CFU/ 100ml (5mL)	154 - 470	3/29/2017	2:47 PM	AT 3/31/2017
S18	15D - Discharge Water, WA Water ID#: 11919836	FECAL COLIFORM	260	CFU/ 100ml (50mL)	237.2 - 282.8	3/29/2017	2:47 PM	AT 3/31/2017
S18	15D - Discharge Water, WA Water ID#: 11919836	E. COLI	258	CFU/ 100ml (50mL)	235.3 - 280.7	3/29/2017	2:47 PM	AT 3/31/2017
S19	NEGCTRL - , WA Water ID#: 11919837	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S19	NEGCTRL - , WA Water ID#: 11919837	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S20	POSCTRL - , WA Water ID#: 11919838	FECAL COLIFORM	25	CFU/ 100ml	20 - 30	3/30/2017	8:00 AM	AT 3/31/2017
S20	POSCTRL - , WA Water ID#: 11919838	E. COLI	25	CFU/ 100ml	20 - 30	3/30/2017	8:00 AM	AT 3/31/2017
S21	Blank - Run #1, WA Water ID#: 11919839	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S21	Blank - Run #1, WA Water ID#: 11919839	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S22	Blank - After Run #10, WA Water ID#: 11919840	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S22	Blank - After Run #10, WA Water ID#: 11919840	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S23	Blank - Final Run, WA Water ID#: 11919841	FECAL COLIFORM	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017
S23	Blank - Final Run, WA Water ID#: 11919841	E. COLI	<1	CFU/ 100ml	0 - 3.7	3/30/2017	8:00 AM	AT 3/31/2017

A Professional Service Corporation in the Northwest

SM 9222D G1c1- Fecal Coliform/ E.coli - CFU

Job Number: 170293 SEA

Report Number: 170293R01 Date Received: 3/30/2017

Client: Herrera Environmental Consultants, Inc

Project Name: Lake Whatcom North Shore Water Testing

		0						
Lab/Cor	Client Sample	Analyte Type	Analysis	UOM	95% Confidence	Sample	Sample	Analyst
Sample			Result		Interval	Date	Time	
No.								

Reviewed by:

Ashley Tonge Technician/Analyst

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
170293-01	5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	0	<2 /	-	3/30 10:00AM	3/31 10:00AM
170293-02	5	0	<20	-	3/30 10:00AM	3/31 10:00AM
	50	0	<2 /	(3/30 10:00AM	3/31 10:00AM
170293-03	5	0	<20	· · · · · · · · · · · · · · · · · · ·	3/30 10:00AM	3/31 10:00AM
	50	5	10	95 8	3/30 10:00AM	3/31 10:00AM
170293-04	5	4	80		3/30 10:00AM	3/31 10:00AM
	50	56	112 /		3/30 10:00AM	3/31 10:00AM
170293-05	5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	9	18	1658	3/30 10:00AM	3/31 10:00AM
170293-06	5	8	160		3/30 10:00AM	3/31 10:00AM
	50	31	62 /	b.	3/30 10:00AM	3/31 10:00AM
170293-07	-5	2	40		3/30 10:00AM	3/31 10:00AM
	50	14	28	2958	3/30 10:00AM	3/31 10:00ÅM
170293-08	-5	18	360		3/30 10:00AM	3/31 10:00AM
	50	170	340	3425800	3/30 10:00AM	3/31 10:00AM
170293-09	5	0	<20	1.5	3/30 10:00AM	3/31 10:00AM
	50	1	2	258	3/30 10:00AM	3/31 10:00AM
170293-10	5	6	120		3/30 10:00AM	3/31 10:00AM
6.C	- 50	64	128	12758	3/30 10:00AM	3/31 10:00AM
170293-11	5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	8	16	1554	3/30 10:00AM	3/31 10:00AM
170293-12	5	7	140		3/30 10:00AM	3/31 10:00AM
	-50	61	122	12438	3/30 10:00AM	3/31 10:00AM
Lab Duplicate						
Negative Control					5	A
Positive Control						

 $\frac{Colonies}{100\,mL} = \frac{Colonies\,counted}{mL\,SampleFiltered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies \ counted}{\sum mL \ sample \ filtered} \times 100$

Sample ID	Volume	Colonies	Result	Herrera Check	Start	End
	(mL)	counted	(CPN/100 mL)		Date/Time:	Date/Time:
170293-13	-5	0	<20		3/30 10:00AM	3/31 10:00AM
170203 15	50	- 11	22	2058	3/30 10:00AM	3/31 10:00AM
170293-14	5	2	40		3/30 10:00AM	3/31 10:00AM
	50	22	44		3/30 10:00AM	3/31 10:00AM
170293-15	5	0	<20		3/30 10:00AM	3/31 10:00AM
	- 50	11	22	2058	3/30 10:00AM	3/31 10:00AM
170293-16	5	40	800 /		3/30 10:00AM	3/31 10:00AM
	50	82	164		3/30 10:00AM	3/31 10:00AM
170293-17	.01	408	> 4080000	gpe	3/30 10:00AM	3/31 10:00AM
		The Party			3/30 10:00AM	3/31 10:00AM
170293-18	-5	14	280		3/30 10:00AM	3/31 10:00AM
	-50	130	260	2625 8	3/30 10:00AM	3/31 10:00AM
2001 Mail						
		20.10				
		Allower and a				
		1	<u> </u>			
Lab Duplicate				· · · · · · · · · · · · · · · · · · ·		
Negative Control	100	0	0			
Positive Control	100	25	25			

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, Sample Filtered} \times 100$

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies\,counted}{\sum mL\,sample\,filtered} \times 100$

Sample ID	Volume (mL)	Colonies counted	Result (CPN/100 mL)	Herrera Check	Start Date/Time:	End Date/Time:
170293-13	- 5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	10	20	185 80	3/30 10:00AM	3/31 10:00AM
170293-14	5	2	40		3/30 10:00AM	3/31 10:00AM
	50	22	44 /	•	3/30 10:00AM	3/31 10:00AM
170293-15	5	0	<20		3/30 10:00AM	3/31 10.00AM
	50	11	22	205 82	3/30 10:00AM	3/31 10:00AM
170293-16	5	10	200		3/30 10:00AM	3/31 10:00AM
	50	41	82		3/30 10:00AM	3/31 10:00AM
170293-17	.01	408	>4080000	Spe	3/30 10:00AM	3/31 10:00AM
				-	3/30 10:00AM	3/31 10:00AM
170293-18	5	14	280		3/30 10:00AM	3/31 10:00AM
	50	129	258	26058	3/30 10:00AM	3/31 10:00AM
		-				
	~	н.				~
						1
		1. S. S.				
	-					
Lab Duplicate				1.000		
Negative Control	100	0	0			1
Positive Control	100	25	25			

 $\frac{Colonies}{100 \, mL} = \frac{Colonies \, counted}{mL \, Sample Filtered} \times 100$

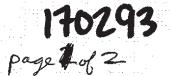
Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies\,counted}{\sum mL\,sample\,filtered} \times 100$

Sample ID	Volume	Colonies	Result	Herrera	Start	End
	(mL)	counted	(CPN/100 mL)	Check	Date/Time:	Date/Time:
170293-01	5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	0	<2 /		3/30 10:00AM	3/31 10:00AM
170293-02	5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	0	<2 /		3/30 10:00AM	3/31 10:00AM
170293-03	-5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	5	10	95 90	3/30 10:00AM	3/31 10:00AM
170293-04	5	4	80		3/30 10:00AM	3/31 10:00AM
	50	56	112 /		3/30 10:00AM	3/31 10:00AM
170293-05	- 5	0	<20	2	3/30 10:00AM	3/31 10:00AM
	50	9	18	165 %	3/30 10:00AM	3/31 10:00AM
170293-06	5	8	160		3/30 10:00AM	3/31 10:00AM
	50	31	62		3/30 10:00AM	3/31 10:00AM
170293-07	-5	2	40		3/30 10:00AM	3/31 10:00AM
	- 50	14	28	29580	3/30 10:00AM	3/31 10:00AM
170293-08	5	18	360		3/30 10:00AM	3/31 10:00AM
	50	170	340	342 3 8	3/30 10:00AM	3/31 10:00AM
170293-09	- 5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	1	2	25 82	3/30 10:00AM	3/31 10:00AM
170293-10	- 5	6	120		3/30 10:00AM	3/31 10:00AM
	- 50	61	122	1225 82	3/30 10:00AM	3/31 10:00AM
170293-11	_ 5	0	<20		3/30 10:00AM	3/31 10:00AM
	50	6	12	1158	3/30 10:00AM	3/31 10:00AM
170293-12	5	7	140		3/30 10:00AM	3/31 10:00AM
	50	55	110	2	3/30 10:00AM	3/31 10:00AM
Lab Duplicate						
Negative Control						
Positive Control						

 $\frac{Colonies}{100\,mL} = \frac{Colonies\,counted}{mL\,SampleFiltered} \times 100$

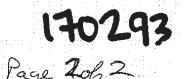

Density: use if only one count is within ideal range (20-60 colonies)

Average Density: use if all counts are outside of ideal range (20-60 colonies) excluding counts greater than 200 or if more than one count is within ideal range

 $\frac{Colonies}{100\,mL} = \frac{\sum Colonies\,counted}{\sum mL\,sample\,filtered} \times 100$

HERRERA

2200 Sixth Avenue | Suite 1100 Seattle, Washington | 98121 p 206 441 9080 | f 206 441 9108 PORTLAND, OR | MISSOULA, MT | OLYMPIA, WA WINTHROP, WA | GUANGZHOU, CHINA Chain of Custody Record


Project Name:	Project Number:	Client:					1	<u></u>			nalvses	Reque	sted				T
Lake Whatcom North Shore Water Testing	16-06326-000	LWWD	· · ·					<u> </u>								1	l ante g
Report To:		Copy To:				• .			:	а А. 							
Rob Zisette								. :		•				ľ.			
Sampled By:		Delivery Metho	d:			- 	1.2			. :							1.18.1
R. Zisette, G. Catarra		Hand deliver	ed	· · ·		ι. V	bacteria		-					.: •			
Laboratory:	Requested C	ompletion Date:	Total No	of Contai	ners:	ainel	bac						1				
LabCorp	24	hrs	1	18	·	of Containers	E			:				. te 1	. :	11.1	
Lab Use:			1			of	Fecal coliform		· · ·							1 · ·	ó
Dr/u	tich of		Sample		Matrix (see	Number	<u>. 0</u>	. 	:					· ·.			Lab ID No.
Sample ID Descript	25 Date	Time	codes)	(Y/N)	codes)	N ^I	<u>ੂ ਜ</u>	ш				1.1					Lab
CI / Control-lake 5,	50 mL 3/29/17	1001	G	N	SW	1	Х	X									
C2 / ¥	3/29/17	1012	G	· N	SW	1	X	X									
1 L / Lake Water 2 D / Discharge water	3/29/17	1056	G	N	SW	1	X	X									
20 / Dischargewater	3/29/17	1/08	G	Ň.	SW	1	X	X									-
30	3/29/17	1121	G	N.	SW	1	X	X									
4 D	3/29/17	1136	G	N	SW	1	X	X									11.2
5 0	3/29/17	1150	G	N	SW	1	.х ⁻	X	•							1.1. 1.1.	
6 Der and des and des and des and	3/29/17	1210	G	N	SW	1	X.:	X									
7 D	3/29/17	1233	G	N	SW	1	X	* X *.		N 							
8 D	3/29/17	1255	G	e N	SW	1	.: X	X									
9 👂 👘 🥐 🖓 🖓 🖓	3/29/17	/305	G	N	SW	1	i X∙	X					· · · · ·				
Comments/Special Instructions:		· · · · · · · · ·				·											
						Cm	Isto	in t	2000	T	mo	41	er :				
Relinquished by (Name/CO/ Signature	- 1	Date/Time	Re	ceived By	(Name/CC))	MIN.		lignatu	ne,					Date/T	īme <i>d</i>	2
Rob Zisette/Herren M.	N Just	43/30/17	08000	Rshk	ey To	Con Sng	L		0	e-	In	er-		·:	3/30	17	7787°(
Relinquished by (Name/CO/ Signature		Date/Time		ceived By	(Name/CC)) <i>(</i>			ignatu	re		1		. [Date/T		

Sample Type: G=Grab C=Composite Matrix Codes: A=Air GW=Groundwater SE=Sediment SO=Soil SW=Surface Water W=Water (blanks) M=Material O=Other (specify)

gc. Lake Whatcom COC.docx

HERRERA

2200 Sixth Avenue | Suite 1100 Seattle, Washington | 98121 p 206 441 9080 | f 206 441 9108 PORTLAND, OR | MISSOULA, MT | OLYMPIA, WA WINTHROP, WA | GUANGZHOU, CHINA **Chain of Custody Record**

Page

WINTHROP, WA GUANGZHOU, CHINA						·					<u>.</u>			Je.	40	2	<u> </u>	
Project Name:	Project		Client:		1111 - 111 1111 - 111	:			T	े के के बाह्य	A	nalyses	Reque	sted	<u>jećeje</u> T		· · · ·	-
Lake Whatcom North Shore Water Testing	16-06	5326-000	LWWD		:	· · · ·		1.1.1										
Report To:			Сору То:	: ::	• 1				· .									
Rob Zisette	· · ·			1. j.							+		а 1					
Sampled By:	t ja tala ja	•	Delivery Method	1:	11 - E - E				···: :								· · : :	:
R. Zisette, G. Catarra		e en e	Hand deliver	ed			S	teri								.		
Laboratory:		Requested Cor		Total No.	of Contai	ners:	of Containers	bac	1									
LabCorp	- 11 	2t	hours		18	·	ont	E E										
Lab Use:		1			1	<u> </u>	of T	Fecal coliform bacteria										0
har hang har so har har bar bar bar bar bar bar bar bar bar b	Vole			Sample Type (see		Matrix (see	Number		Coli					i e i George				Lab ID No.
Sample ID/DCSC		Date	Tíme	codes)	(Y/N)	codes)	Nur	Feo	<u></u> ш			 						Lab
Sample ID/DOSC. 10 8 / Discharge Worten 5,4	50 mL	3/29/17	1325	G	Ň. ^{El}	SW	1	X	1 ¹ X 1						· · · ·			
11 D]		3/29/17	1339	G	N	SW -	1	X	X				1					1
12)		3/29/17	1357	G	N	SW	1	X	X									
13)		3/29/17	1412	G	N	SW	1	X	X			· · · ·				· · · · · ·		
		3/29/17	1428	G	N	SW	1	X	x			, .						• •
OSS (Raw sewage) 0.01	mL	3/29/17	1541	G	N	0	1	X	x						.			
	50 ml	3/29/1-		G	N	SW	1	X	X					•		-	•	
								- Annie Annemie - A						· ·				
	·····					:			** : .									
																-		
	: :		· · · · · · · · · · · · · · · · · · ·			· · · · · · ·									·		· .	
Comments/Special Instructions:		· · ·	· · · · ·	<u> </u>	I			l'	L				<u> </u>		I			
						· . ·			·· ··		····· . :			-			· · · ·	
Relinguished by (Name/CO/ Signature			Date/Time	Re	ceived By	(Name/CC))			Signatu	re	· · · ·				Date/	Time	
11/ kito Herrera Rob Zi	sett	e :	3/30/1	0860	> Asl	nley -	Tong			Ó	10	nou		·····		3/30	117	iAm
Relinquished by (Name/CO/ Signature			Date/Time	Re	ceived By	(Nanoe/CO	D) 0			Signatu	re	1				Date/		<u> </u>
uni unitat unitat un ulter ancara. No occidente della contra della d									ľ	· · · · · · · · · · · · · · · · · · ·	•							

gc Lake Whatcom COC.docx Project Name

24 April 2017

Rob Zisette Herrera Environmental Consultants 2200 6th Avenue, Suite 1100 Seattle, WA 98121

RE: Lake Whatcom North Shore Testing

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17C0454 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Mark Harris, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Requested:	std.		Page	1	of	2			Analyt	tical Resources, Incorporated ical Chemists and Consultant
ARI Client Company: HEVYLVA		Phone:		2	Date 3	29/17	lce Pre	sent?		7	Tukwil	South 134th Place, Suite 100 a, WA 98168 95-6200 206-695-6201 (fax)
Rob Zisette		No. o Coolers	1	Coo Ten	pler ips:		www.arilabs.com					
Client Project Name: Lake Whatcom	North SI	iove Wa	terTe	sting		1		Analysis	Requested	1	1	Notes/Comments
Client Project Name: Lake Whatcom Client Project #: [le - 06326-000	Samplers: R.21	selte,	G. Cat	arva	al Soh.	Staunde/ Chloride						D-hold analyses
Sample ID	Date	Time	Matrix	No. Containers	Phosoh.	Brownde						bacteria Vactoria results.
CI	3/29/17	(00)	W	2×spe	\otimes	\otimes				5.16		
c2	1	1012	1	1	1	1						
12		1056										
20		1108										
3D		1121										
4D		1136										
50		1150							1			
60		1210										
70		1233										
80	V	1255	1	Y	+	¥						
Comments/Special Instructions	Relinquished by: (Signature) Printed Name:	THE G	tarra	Received by: (Signature)	uithu	i the	0	Relinquished (Signature) Printed Nam			Received by (Signature) Printed Nan	
	Gina	Cata	wa	Br	ittre	X H.	x ly	1				ις.
		vera			T	,		Company:			Company:	
	Date & Time: 330117	133	1	Date & Time: 3/30/1	17	13:	31	Date & Time:			Date & Time	9:

Lignits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program recets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 17C0454	Turn-around				Page	2	of	2			Analytical Resources, Incorporated Analytical Chemists and Consultan				
ARI Client Company: Herver	a	Phone: 206	7878	262	Date: 32	9/17	lce Pres	sent?		$\exists \Box$	Tukwila	outh 134th Place, Suite 100 a, WA 98168			
Client Contact: Rob ZiseHe					No. of Coolers:	(Coo Tem	ler ps:			206-695-6200 206-695-6201 (fax www.arilabs.com				
Client Project Name: LARC WHATCOM N	orth Sh	ove wa	ter te	sting				Analysis R	equested			Notes/Comments			
Client Project #: 16-06-326-006	Samplers: R-2	isette,	G,C4	tarva	smo	vide			-			B-hold anelyse pending backenia			
Sample ID	Date	Time	Matrix	No. Containers	Total Phosphorus	Brownel						results.			
90	3)29)17	1305	W	2	\bigotimes	\otimes									
IDD	1	1325	1	1	1	1									
11 D		1339													
12Þ		1357									1				
13D		1412													
14D		1428													
DSS	1	1541	X	¥	1	1									
										11		1			
Comments/Special Instructions	Relinquished by:	JS Ca	t	Received by: (Signature)	uittn	in the	.00	Relinquished b	y:		Received by: (Signature)				
	Printed Name:	Cata	wa	Printed Name:	(y Ha		Printed Name:			Printed Name				
	Company:	reva		Company:				Company:			Company:				
	Date & Time: 3 3011		31	Date & Time: 3/301		13:	31	Date & Time:			Date & Time:				

Lignits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program neets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources,	Incorporated
Analytical Chemists ar	nd Consultants

Cooler Receipt Form

COC No(s): NA Delivered by: Fed-Ex UPS Courier Gand Delivered other. Assigned ARI Job No: 1700454 Tracking No: Preliminary Examination Phase: Tracking No: NE Were intact, properly signed and dated custody seals attached to the outside of to cooler? YES NK Were custody papers included with the cooler? YES NK Temperature of Cooler(s) (*C) (recommended 2.0-6.0 *C for chemistry) YES NK Time: 13:51 Delivered by: 7:60 Cooler Accepted by: 13:51 Dete: 3/30(17) Time: 1/3:31 Cooler Accepted by: 13:51 Dete: 3/30(17) Time: 1/3:31 Log-In Phase: VES NK YES NK Was a temperature black included in the cooler? YES NK YES NK What kind of packing material was used? Bubble Wrap Wert B Gel Packs Baggles Foam Block Paper Other; NK YES NK Ware all bottles and legible? YES NK YES NK Were all bottles and legible? YES NK YES NK Uid all bottles and legible? YES <th>lient: Herrera</th> <th>Project Name: Lake</th> <th>Maticon</th>	lient: Herrera	Project Name: Lake	Maticon
Assigned ARI Job No: 1	No(s): NA		
Preliminary Examination Phase: Were intact, properly signed and dated oustody seals attached to the outside of to cooler? YES Were custody papers included with the cooler? YES Were custody papers properly filled out (ink, signed, etc.) YES Time: 1 Temperature of Cooler(s) (*C) (recommended 2.0-6.0 °C for chemistry) Image: Time: 1 Cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: Cooler Accepted by: B.H. Date: 3/30/17 Cooler Accepted by: Complete custody forms and attach all shipping documents Log-In Phase: YES Was a temperature blank included in the cooler? YES Was sufficient tee used (if appropriate)? NA Was sufficient tee used (if appropriate)? NA Ware all bottles arrive in good condition (unbroken)? YES Were all bottles arrive in good condition (unbroken)? YES Were all bottles labels and tags agree with custody papers? YES Ware all bottles labels and tags agree with custody papers? YES Were all bottles ord tags agree with custody papers? YES Were all bottles arise in acto of Complete analyses? <t< th=""><th></th><th></th><th>~</th></t<>			~
Were custody papers included with the cooler? YES Were custody papers properly filled out (ink, signed, etc.) YES Temperature of Cooler(s) (*C) (recommended 2.0-6.0 °C for chemistry) S. (a Time: J:3:(1) If cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: Cooler Accepted by: J:3:(1) Toomplete custody forms and attach all shipping documents Log-In Phase: YES Was a temperature blank included in the cooler? YES Was a sufficient ice used (if appropriate)? Bubble Wrap(Wet IDE) Gel Packs Baggles Foam Block Paper Other: Was sufficient ice used (if appropriate)? YES Were all bottles seried in individual plastic bags? NA YES NC Were all bottles arrive in good condition (unbroken)? YES Were all bottle labels complete and legible? YES Vere all bottle labels used correct for the requested analyses? YES No YES No any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA Was sufficient amount of semple sent in each bottle? NA Was sufficient amount of semple sent in each bottle? NA <td< td=""><td>nary Examination Phase:</td><td></td><td>NA</td></td<>	nary Examination Phase:		NA
Ware custody papers included with the cooler? YES Ware custody papers properly filled out (ink, signed, etc.) YES Temperature of Cooler(s) (*C) (recommended 2.0-6.0 °C for chemistry) 3.6 Time: 3.130(17) Time: 13:30 Cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: Cooler Accepted by: 3.4 Date: 3.130(17) Time: 13:30 Vers VES Was a temperature black included in the cooler? YES What kind of packing material was used? Bubble Wrap (Wet IDE) Gel Packs Baggles Foam Block Paper Other: Was a sufficient ice used (if appropriate)? NA Were all bottles sealed in individual plastic bags? NA Were all bottles arrive in good condition (unbroken)? YES Were all bottle labels complete and legible? YES Vere all bottle labels containers listed on COC match with the number of containers received? YES Vere all bottle labels and tags agree with custody papers? YES Ware all bottle labels and tags agree with custody papers? YES Ware all bottle labels and tags agree with custody papers? YES Ware all bottle labels and tags	ntact, properly signed and dated custody seals attached	d to the outside of to cooler?	VEC
Ware custody papers properly filled out (ink, signed, etc.) YES Not Temperature of Cooler(is) (*C) (recommended 2.0-6.0 °C for chemistry) 3_16 YES Not Tremperature of Cooler(is) (*C) (recommended 2.0-6.0 °C for chemistry) 3_16 Temp Gun ID#::::::::::::::::::::::::::::::::::::	custody papers included with the cooler?		
Temperature of Cooler(s) (*C) (recommended 2.0-6.0 °C for chemistry) 3.6 Temp Gun ID#: 12005: 2 If cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: 12005: 2 Cooler Accepted by:	custody papers properly filled out (ink, signed, etc.)		
Temp Gun ID#: 120052 Cooler Accepted by:	erature of Cooler(s) (°C) (recommended 2 0-6 0 °C for a	chemistry)	YES NO
Cooler Accepted by: B.H. Date: 3/30(17) Time: 13:3) Complete custody forms and attach all shipping documents Log-In Phase: YES NC Was a temperature blank included in the cooler? YES NC What kind of packing material was used? Bubble Wrap(WetTe) Gel Packs Baggles Foam Block Paper Other: NA YES NC Was a temperature blank included in the cooler? NA YES NC Was a temperature blank included in the cooler? NA YES NC Was a temperature blank included in the cooler? NA YES NC Was a temperature blank included in the cooler? NA YES NC Was aufficient loc used (if appropriate)? Bubble Wrap(WetTe) Gel Packs Baggles Foam Block Paper Other: NA YES NC Ware all bottle sated an individual plastic bags? NA YES NC Did all bottle labels complete and legible? YES NC YES NC Were all bottle labels and tags agree with custody papers? YES NC YES NC Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs). NA YES		<u>5.le</u>	
Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? YES What kind of packing material was used? Bubble Wrap(Wet Ce) Gel Packs Baggles Foam Block Paper Other: Was sufficient ice used (if appropriate)? NA Ware all bottles sealed in individual plastic bags? YES Did all bottles arrive in good condition (unbroken)? YES Were all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Ware all VOC vials free of air bubbles? NA Was sufficient amount of sample sent in each bottle? YES Date VOC Trip Blank was made at ARI NA Wes Sample Split by ARI : NA YES NA Samples Logged by: YES Material Ele on Bottle Sample ID on COC		-1-1-	Temp Gun ID#: 120052-76
Was a temperature blank included in the cooler? YES What kind of packing material was used? Bubble Wrap Wet Top Gel Packs Beggies Foam Block Paper Other: Was sufficient ice used (if appropriate)? NA Ware all bottles sealed in individual plastic bags? NA Did all bottles arrive in good condition (unbroken)? YES Were all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA Was sufficient amount of sample sent in each bottle? YES Date 3/3 (117 Time: Was Sample Split by ARI : YES Date: 3/3 (117 ** Notify Project Manager of discrepancies or concerns ** Sample ID on Bottle Sample ID on Bottle			e: 13 3)
What kind of packing material was used? Bubble Wrap Wet Co. Gel Packs Baggies Foam Block Paper Other: Was sufficient ice used (if appropriate)? NA Ware all bottles sealed in individual plastic bags? NA Were all bottles arrive in good condition (unbroken)? YES Did all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Were all VOC vials free of air bubbles? NA Was sufficient amount of sample sent in each bottle? YES Date VOC Trip Blank was made at ARI. NA Was Sample Split by ARI : NA YES Date: 3/3 (117 Time: was Sample Logged by: TS - H_ Date: 3/3 (117 Was Sample ID on Bottle Sample ID on COC	Phase:	ns and attach all shipping documents	
What kind of packing material was used? Bubble Wrap Wet Co. Gel Packs Baggies Foam Block Paper Other: Was sufficient ice used (if appropriate)? NA Ware all bottles sealed in individual plastic bags? NA Were all bottles arrive in good condition (unbroken)? YES Did all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Were all VOC vials free of air bubbles? NA Was sufficient amount of sample sent in each bottle? YES Date VOC Trip Blank was made at ARI. NA Was Sample Split by ARI : NA YES Date: 3/3 (117 Time: was Sample Logged by: TS - H_ Date: 3/3 (117 Was Sample ID on Bottle Sample ID on COC			
With the or packing material was used? Bubble Wrap Wet Co. Gel Packs Baggles Foam Block Paper Other: Was sufficient ice used (if appropriate)? NA YES NC Ware all bottles sealed in individual plastic bags? YES NC Did all bottles arrive in good condition (unbroken)? YES NC Were all bottle labels complete and legible? YES NC Did the number of containers listed on COC match with the number of containers received? YES NC Did all bottle labels and tags agree with custody papers? YES NC Were all bottles used correct for the requested analyses? YES NC Ware all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? YES NC Was Sample Split by ARI : NA YES NC samples Logged by: 12 A YES Date: 3/3 (117 Time: 6:55 (o *** Notify Project Manager of discrepancies or concerns **			YES NO
Was sufficient to used (if appropriate)? NA YES NA Were all bottles sealed in individual plastic bags? YES NC Did all bottle sealed in individual plastic bags? YES NC Were all bottle labels complete and legible? YES NC Did the number of containers listed on COC match with the number of containers received? YES NC Did all bottle labels and tags agree with custody papers? YES NC Were all bottles used correct for the requested analyses? YES NC Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI NA YES NC Was Sample Split by ARI : NA YES Date: 3/3 (1/17 Time: 6:55 (o ** Notify Project Manager of discrepancies or concerns **		Irap Wet Ice Gel Packs Baggies Foar	Block Paper Other:
Did all bottles arrive in good condition (unbroken)? YES Were all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Ware all bottles used correct for the requested analyses? YES Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs). NA Were all VOC vials free of air bubbles? NA Was sufficient amount of sample sent in each bottle? NA Was Sample Split by ARI : NA YES Date: 3/3 (117 Time: ** Notify Project Manager of discrepancies or concerns **	inclent ice used (if appropriate)?	*****	
Were all bottle labels complete and legible? YES Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES Were all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI	hottles prive in good contribution (units in the local		YES NO
Did the number of containers listed on COC match with the number of containers received? YES Did all bottle labels and tags agree with custody papers? YES Were all bottles used correct for the requested analyses? YES Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs). NA YES Were all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI NA YES NC Was Sample Split by ARI : NA YES Date: 3/3 (117 Time: 16:5 (0 ** Notify Project Manager of discrepancies or concerns **	I bottle labels complete and logible?		YES NO
Did all bottle labels and tags agree with custody papers? YES YES Ware all bottles used correct for the requested analyses? YES NC Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES NC Ware all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI	number of containers listed on COC match with the		YES NO
Were all bottles used correct for the requested analyses? YES NC Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES NC Were all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI. YES Date/Time: Equipment: Split by: Samples Logged by: YES Date: 3/3 (// 7 Time: 6:560 ** Notify Project Manager of discrepancies or concerns ** Sample ID on Bottle Sample ID on COC Sample ID on Bottle	pottle labels and facts agree with custody papered	Imper of containers received?	YES NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES NC Were all VOC vials free of air bubbles?	Il bottles used correct for the requested analyses?		YES NO
Were all VOC vials free of air bubbles? NA YES NC Was sufficient amount of sample sent in each bottle? NA YES NC Date VOC Trip Blank was made at ARI. Was Sample Split by ARI : NA YES NC Was Sample Split by ARI : NA YES Date/Time: Equipment: Split by: Split by: Samples Logged by: 13 - H. Date: 3/3 (// 17 Time: 6 : 5 (o Sample ID on Bottle	of the analyses (bottles) require preservation? (attach		YES NO
Was sufficient amount of sample sent in each bottle? Image: Constraint of sample sent in each bottle? Date VOC Trip Blank was made at ARI. Image: Constraint of sample sent in each bottle? Was Sample Split by ARI : Image: Constraint of sample sent in each bottle? Was Sample Split by ARI : Image: Constraint of sample sent in each bottle? Samples Logged by: Image: Constraint of sample sent in each bottle? Samples Logged by: Image: Constraint of sample sent in each bottle? Sample ID on Bottle Sample ID on COC	Il VOC vials free of air bubbles?	preservation sneet, excluding VOCs)	
Date VOC Trip Blank was made at ARI Was Sample Split by ARI : NA YES Date/Time: Equipment: Samples Logged by: B H Date: 3/3 (///7 Time: b ** Notify Project Manager of discrepancies or concerns ** Sample ID on Bottle Sample ID on COC	fficient amount of sample sent in each bottle?		
Was Sample Split by ARI : NA YES Date/Time: Equipment: Split by: Samples Logged by: 13.4 Date: 3/3(1/7) Time: 6:56 ** Notify Project Manager of discrepancies or concerns ** Sample ID on Bottle	C Trip Blank was made at ARI		6
Samples Logged by: <u>B.H.</u> Date: <u>3/3 (117</u> Time: <u>6:56</u> ** Notify Project Manager of discrepancies or concerns **			
Sample ID on Bottle Sample ID on COC Sample ID on COC	· 6 11		
Sample ID on Bottle Sample ID on COC Sample ID D Sample ID		Title.	6:56
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC	** Notify Project Manag	ger of discrepancies or concerns **	
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC			
	Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on COC
<u> </u>			
1 s			
Additional Notes, Discrepancies, & Resolutions:	nal Notes, Discrepancies, & Resolutions:		
Most labels were completely smeared and illegible Til I.T.	t labels were completely:	smeared and illegit	>le. I identified
those samples by the number written on their lids.	e samples by the number	written on their 1	ids.
By: B.H. Date: 3/31/17	H. Date: 3/31/17		
Small Air Bubbles Peshubbles LARGE Air Bubbles Small → "sm" (<2 mm)	LARGE AT EUtides	Small → "sm" (<2 mm)	
Peabubbles → "pb" (2 to <4 mm)	2-4 mm >4 mm	Peabubbles → "pb" (2 to <4 mm)	
Large → "lg" (4 to < 6 mm)	• • • • • • • • • • • • •		
Headspace → "hs" (>6 mm)			

Revision 014

Analytical Resources, Incorporated

Printed: 3/31/2017 7:08:59AM

Analytical Chemists and Consultants

WORK ORDER

17C0454

Client: Herrera Environmental Consultants

Project Manager: Mark Harris Project Number: [none]

Project: Lake Whatcom North Shore Testing

Preservation Confirmation

Container ID	Container Type	рН	
17C0454-01 A	Small OJ, 500 mL		
17C0454-01 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-02 A	Small OJ, 500 mL		-
17C0454-02 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-03 A	Small OJ, 500 mL		
17C0454-03 B	Small OJ, 500 mL, 9N H2SO4	22 Pass	_
17C0454-04 A	Small OJ, 500 mL		
17C0454-04 B	Small OJ, 500 mL, 9N H2SO4	22 Pass	
17C0454-05 A	Small OJ, 500 mL		
17C0454-05 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-06 A	Small OJ, 500 mL		
17C0454-06 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-07 A	Small OJ, 500 mL		
17C0454-07 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-08 A	Small OJ, 500 mL		
17C0454-08 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-09 A	Small OJ, 500 mL		
17C0454-09 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-10 A	Small OJ, 500 mL		
17C0454-10 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-11 A	Small OJ, 500 mL))	
17C0454-11 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-12 A	Small OJ, 500 mL		
17C0454-12 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-13 A	Small OJ, 500 mL		
17C0454-13 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-14 A	Small OJ, 500 mL	1 - (-)	
17C0454-14 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-15 A	Small OJ, 500 mL		
17C0454-15 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass	
17C0454-16 A	Small OJ, 500 mL		

B.H Reviewed By

WORK ORDER

	17C0454
Client: Herrera Environmental Consultants	Project Manager: Mark Harris

Project: Lake Wh	atcom North Shore Testing	Project Number: [none]
17C0454-16 B	Small OJ, 500 mL, 9N H2SO4	La Pass
17C0454-17 A	Small OJ, 500 mL	
17C0454-17 B	Small OJ, 500 mL, 9N H2SO4	L2 Pass

Preservation Confirmed By

<u>3/3///7</u> Date

Reviewed By

B.H.

<u>3/3///7</u> Date

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000

Reported: 24-Apr-2017 12:15

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Rob Zisette

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C1	17C0454-01	Water	29-Mar-2017 10:01	30-Mar-2017 13:31
C2	17C0454-02	Water	29-Mar-2017 10:12	30-Mar-2017 13:31
1L	17C0454-03	Water	29-Mar-2017 10:56	30-Mar-2017 13:31
2D	17C0454-04	Water	29-Mar-2017 11:08	30-Mar-2017 13:31
3D	17C0454-05	Water	29-Mar-2017 11:21	30-Mar-2017 13:31
4D	17C0454-06	Water	29-Mar-2017 11:36	30-Mar-2017 13:31
5D	17C0454-07	Water	29-Mar-2017 11:50	30-Mar-2017 13:31
6D	17C0454-08	Water	29-Mar-2017 12:10	30-Mar-2017 13:31
7D	17C0454-09	Water	29-Mar-2017 12:33	30-Mar-2017 13:31
8D	17C0454-10	Water	29-Mar-2017 12:55	30-Mar-2017 13:31
9D	17C0454-11	Water	29-Mar-2017 13:05	30-Mar-2017 13:31
10D	17C0454-12	Water	29-Mar-2017 13:25	30-Mar-2017 13:31
11D	17C0454-13	Water	29-Mar-2017 13:39	30-Mar-2017 13:31
12D	17C0454-14	Water	29-Mar-2017 13:57	30-Mar-2017 13:31
13D	17C0454-15	Water	29-Mar-2017 14:12	30-Mar-2017 13:31
14D	17C0454-16	Water	29-Mar-2017 14:28	30-Mar-2017 13:31
OSS	17C0454-17	Water	29-Mar-2017 15:41	30-Mar-2017 13:31

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Analytical Report

Reported: 24-Apr-2017 12:15

Case Narrative

Client: Herrera Environmental Consultants **Project:** Lake Whatcom North Shore Testing **Workorder:** 17C0454

Sample receipt

The samples listed on the preceding page were received 30-Mar-2017 13:31 under ARI work order 17C0454. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Wet Chemistry

These samples were prepared and analyzed within the recommended holding times.

All initial and continuing calibrations were within method requirements.

A small amount of chloride was detected in the method blank (MB) associated with these samples. Choride was detected in all samples associated with this MB. Since the concentrations of chloride measured in the samples were significantly greater than the amount found in the blank, no corrective actions were taken.

A small amount of total phosphorous was detected in the MB associated with these samples. Total phosphorous was detected in all samples associated with this MB. All samples that contained total phosphorous at concentrations that were less than 10x the amount found in the MB were re-prepared and re-analyzed. Total phosphorous was not detected in the re-analyses of the MBs. The results for the re-analyses only have been submitted for these samples. No other target compounds were detected in the MBs above the LOQs.

The percent recoveries for all compounds were within acceptable QC limits for the LCSs.

A matrix spike (MS) was prepared and analyzed for bromide and chloride in conjunction with sample 'C1'. The percent recoveries for both anions were within acceptable QC limits for the MS.

A matrix duplicate (MD) was prepared and analyzed for bromide and chloride in conjunction with sample 'C1'. The RPDs for both anions were within acceptable QC limits for the MD.

Chloride

Herrera Environmental	Consultants	Project: Lake W	hatcom North Sho	re Testing			
2200 6th Avenue, Suite		oject Number: 16-0632		ie iesting	Reported:		
Seattle, WA 98121		ject Manager: Rob Zis				24-Apr-20	
		C1					
		17C0454-01 (Wat Sampled: 03/29/2017	,				
Wet Chemistry					2.00		
Sample Preparation:	Preparation Method: No Prep Wet Chem						
	Preparation Batch: BFD0124	Sample Size: 5					
	Prepared: 04/06/2017 08:52	Final Volume:	5 mL				
Analytical Method: EPA	. 300.0	Instrument: D2	X500		Aı	nalyzed: 04/	13/2017 14:09
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes

16887-00-6

1

0.100

2.59

mg/L

В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

C1

17C0454-01RE1 (Water)

Sampled: 03/29/2017 10:01

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0538 Prepared: 04/21/2017 13:02	Persulfate Sample Size: 25 Final Volume: 5					
Analytical Method: SM 4	nalytical Method: SM 4500-P E-99		Instrument: UV1800-2		А	nalyzed: 04/	22/2017 15:00
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	ND	mg-P/L	U

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

1L 17C0454-03 (Water) Sampled: 03/29/2017 10:56

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume: :					
Analytical Method: EPA	300.0	Instrument: D2	K500		A	nalyzed: 04/	13/2017 15:16
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.56	mg/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

1L 17C0454-03RE1 (Water) Sampled: 03/29/2017 10:56

Sample Preparation:	Preparation Method: SM 4500-P B-5 P Preparation Batch: BFD0538	Sample Size: 25 mL					
	Prepared: 04/21/2017 13:02	Final Volume: 50 mL					
Analytical Method: SM 4	500-P E-99	Instrument: UV1	800-2		A	nalyzed: 04/	22/2017 15:00
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0120	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Notes

U

2D

17C0454-04 (Water) Sampled: 03/29/2017 11:08

Preparation Method: No Prep Wet Chem Sample Preparation: Preparation Batch: BFD0124 Sample Size: 5 mL Prepared: 04/06/2017 08:52 Final Volume: 5 mL Instrument: DX500 Analytical Method: EPA 300.0 Analyzed: 04/13/2017 15:33 Reporting Limit CAS Number Dilution Units Analyte Result 0.100 24959-67-9 ND Bromide 1 mg/L

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Chloride	16887-00-6	1	0.100	2.30	mg/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

2D

17C0454-04RE1 (Water)

Sampled: 03/29/2017 11:08

Sample Preparation:	Preparation Method: SM 4500-P B-5 I Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	Persulfate Sample Size: 25 Final Volume: 5					
Analytical Method: SM 4	Analytical Method: SM 4500-P E-99		800-2		A	nalyzed: 04/	19/2017 13:47
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0460	mg-P/L	Inotes

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

3D

17C0454-05 (Water) Sampled: 03/29/2017 11:21

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: D	X500		A	nalyzed: 04/	13/2017 15:50
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.66	mg/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

3D

17C0454-05RE1 (Water)

Sampled: 03/29/2017 11:21

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0538 Prepared: 04/21/2017 13:02	5 Persulfate Sample Size: 25 mL Final Volume: 50 mL					
Analytical Method: SM 4	4500-P E-99	Instrument: UV1800-2			A	nalyzed: 04/	22/2017 15:01
Analyte		CAS Number	Dilution	Reporting Limit			
Total Phosphorus		7723-14-0	1	0.00800	0.0140	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

4D

17C0454-06 (Water) Sampled: 03/29/2017 11:36

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: D	X500		Aı	nalyzed: 04/	13/2017 17:00
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	3.10	mg/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

4D

17C0454-06RE1 (Water)

Sampled: 03/29/2017 11:36

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	5 Persulfate Sample Size: 25 mL Final Volume: 50 mL					
Analytical Method: SM 4	4500-P E-99	Instrument: UV1800-2			A	nalyzed: 04/	19/2017 13:48
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0640	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

5D

17C0454-07 (Water) Sampled: 03/29/2017 11:50

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume: 1					
Analytical Method: EPA	. 300.0	Instrument: D2	X500		A	nalyzed: 04/	13/2017 17:16
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.77	mg/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

5D

17C0454-07RE1 (Water) Sampled: 03/29/2017 11:50

Preparation Method: SM 4500-P B-5 Persulfate Sample Preparation: Preparation Batch: BFD0422 Sample Size: 25 mL Prepared: 04/18/2017 10:45 Final Volume: 50 mL Analytical Method: SM 4500-P E-99 Instrument: UV1800-2 Analyzed: 04/19/2017 13:48 Reporting CAS Number Limit Dilution Units Analyte Result Notes 7723-14-0 0.00800 Total Phosphorus 0.0660 mg-P/L 1

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

6D

17C0454-08 (Water) Sampled: 03/29/2017 12:10

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: D2	K500		А	nalyzed: 04/	13/2017 17:33
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.42	mg/L	В
Wet Chemistry					6.00		
Sample Preparation:	Preparation Method: SM 4500-P B-4 Strong		5 X				
	Preparation Batch: BFD0198 Prepared: 04/15/2017 12:20	Sample Size: 2 Final Volume:					
Analytical Method: SM	4500-P E-99	Instrument: UV	800-2		A	nalyzed: 04/	17/2017 16:37
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0860	mg-P/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

8D

17C0454-10 (Water) Sampled: 03/29/2017 12:55

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124	Sample Size: 5	mL				
	Prepared: 04/06/2017 08:52	Final Volume:					
Analytical Method: EPA	. 300.0	Instrument: D2	X500		A	nalyzed: 04/	13/2017 17:50
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.87	mg/L	В
Wet Chemistry					6.00		
Sample Preparation:	Preparation Method: SM 4500-P B-4 Strong	Acid					
	Preparation Batch: BFD0198	Sample Size: 2	5 mL				
	Prepared: 04/15/2017 12:20	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV	1800-2		А	nalyzed: 04/	17/2017 16:38
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0880	mg-P/L	В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

9D

17C0454-11 (Water)

Sampled: 03/29/2017 13:05

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume: 5					
Analytical Method: EPA	. 300.0	Instrument: DX	K500		A	nalyzed: 04/1	13/2017 18:07
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.46	mg/L	В
Wet Chemistry					6.00		
Sample Preparation:	Preparation Method: SM 4500-P B-4 Stro	ong Acid					
	Preparation Batch: BFD0198	Sample Size: 2	5 mL				
	Prepared: 04/15/2017 12:20	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV1	800-2		A	nalyzed: 04/1	17/2017 16:39
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.218	mg-P/L	В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

10D

17C0454-12 (Water)

Sampled: 03/29/2017 13:25

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: DX500			A	nalyzed: 04/	13/2017 18:23
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	2.17	mg/L	В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

10D

17C0454-12RE1 (Water)

Sampled: 03/29/2017 13:25

Sample Preparation:	Preparation Method: SM 4500-P B-5 I Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	5 Persulfate Sample Size: 25 mL Final Volume: 50 mL					
Analytical Method: SM 4	4500-P E-99	Instrument: UV1800-2			A	nalyzed: 04/	19/2017 13:49
Analyte		CAS Number	Dilution	Reporting Limit			
Total Phosphorus		7723-14-0	1	0.00800	0.0540	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

11D

17C0454-13 (Water)

Sampled: 03/29/2017 13:39

Sample Preparation:	Preparation Method: No Prep Wet Chem						
	Preparation Batch: BFD0124	Sample Size: 5	mL				
	Prepared: 04/06/2017 08:52	Final Volume:	5 mL				
Analytical Method: EPA	. 300.0	Instrument: D2	K500		A	nalyzed: 04/	13/2017 18:40
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.71	mg/L	В
Wet Chemistry					6.00		
Sample Preparation:	Preparation Method: SM 4500-P B-4 Stron	g Acid					
1 1	Preparation Batch: BFD0198	Sample Size: 2	5 mL				
	Prepared: 04/15/2017 12:20	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV	800-2		A	nalyzed: 04/	17/2017 16:40
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0980	mg-P/L	В

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

12D

17C0454-14 (Water)

Sampled: 03/29/2017 13:57

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume:					
Analytical Method: EPA	300.0	Instrument: D	X500		A	nalyzed: 04/	13/2017 18:57
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.80	mg/L	В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

12D

17C0454-14RE1 (Water)

Sampled: 03/29/2017 13:57

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	5 Persulfate Sample Size: 25 mL Final Volume: 50 mL					
Analytical Method: SM 4	nalytical Method: SM 4500-P E-99		Instrument: UV1800-2		А	nalyzed: 04/	19/2017 13:50
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0620	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

13D

17C0454-15 (Water)

Sampled: 03/29/2017 14:12

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 mL Final Volume: 5 mL					
Analytical Method: EPA 300.0		Instrument: D	X500		A	nalyzed: 04/	13/2017 19:14
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	1	0.100	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	1	0.100	1.38	mg/L	В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

13D

17C0454-15RE1 (Water)

Sampled: 03/29/2017 14:12

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	Persulfate Sample Size: 2 Final Volume:					
Analytical Method: SM 4	500-P E-99	Instrument: UV	1800-2		A	nalyzed: 04/	19/2017 13:50
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0600	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

14D

17C0454-16 (Water)

Sampled: 03/29/2017 14:28

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 mL Final Volume: 5 mL						
Analytical Method: EPA 300.0		Instrument: D2	K500		Analyzed: 04/13/2017 19			
Analyte		CAS Number	Dilution	Reporting Limit	Result	Units	Notes	
Bromide		24959-67-9	1	0.100	ND	mg/L	U	
				Reporting				
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes	
Chloride		16887-00-6	1	0.100	1.78	mg/L	В	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

14D

17C0454-16RE1 (Water)

Sampled: 03/29/2017 14:28

Sample Preparation:	Preparation Method: SM 4500-P B-5 Preparation Batch: BFD0422 Prepared: 04/18/2017 10:45	Persulfate Sample Size: 2. Final Volume: 5					
Analytical Method: SM 4	1500-P E-99	Instrument: UV1	800-2		A	nalyzed: 04/	19/2017 13:50
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	1	0.00800	0.0880	mg-P/L	

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

OSS

17C0454-17 (Water)

Sampled: 03/29/2017 15:41

Sample Preparation:	Preparation Method: No Prep Wet Chem Preparation Batch: BFD0124 Prepared: 04/06/2017 08:52	Sample Size: 5 Final Volume: :					
Analytical Method: EPA	300.0	Instrument: D2	X500		A	nalyzed: 04/	13/2017 20:21
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Bromide		24959-67-9	10	1.00	ND	mg/L	U
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Chloride		16887-00-6	10	1.00	48.1	mg/L	B, D
Wet Chemistry					6.00		
Sample Preparation:	Preparation Method: SM 4500-P B-4 Strong	gAcid					
1 1	Preparation Batch: BFD0198	Sample Size: 2	5 mL				
	Prepared: 04/15/2017 12:20	Final Volume:	50 mL				
Analytical Method: SM	4500-P E-99	Instrument: UV	1800-2		A	nalyzed: 04/	17/2017 16:43
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Total Phosphorus		7723-14-0	20	0.160	10.2	mg-P/L	B, D

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Wet Chemistry - Quality Control

Batch BFD0124 - No Prep Wet Chem

Instrument: DX500

		Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BFD0124-BLK1)			Prep	ared: 06-Api	-2017 Ana	alyzed: 13-	Apr-2017 13	3:32		
Bromide	ND	0.100	mg/L							U
Chloride	0.103	0.100	mg/L							*
Blank (BFD0124-BLK2)			Prep	ared: 06-Api	-2017 Ana	alyzed: 13-	Apr-2017 14	4:26		
Bromide	ND	0.100	mg/L							U
Chloride	ND	0.100	mg/L							U
LCS (BFD0124-BS1)			Prep	ared: 06-Apr	-2017 Ana	alyzed: 13-	Apr-2017 13	3:49		
Bromide	3.03	0.100	mg/L	3.00		101 %	75-125			
Chloride	2.94	0.100	mg/L	3.00		97.8 %	75-125			В
Duplicate (BFD0124-DUP1)	Source:	17C0454-01	Prep	ared: 06-Api	-2017 Ana	alyzed: 13-	Apr-2017 14	1:43		
Bromide	ND	0.100	mg/L		ND					U
Chloride	2.59	0.100	mg/L		2.59			0.23	20	В
Matrix Spike (BFD0124-MS1)	Source:	17C0454-01	Prep	ared: 06-Api	-2017 Ana	alyzed: 13-	Apr-2017 15	5:00		
Bromide	1.94	0.100	mg/L	2.00	ND	96.8 %	75-125			
Chloride	4.76	0.100	mg/L	2.00	2.59	109 %	75-125			В

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Wet Chemistry - Quality Control

Batch BFD0198 - SM 4500-P B-4 Strong Acid

Instrument: UV1800-2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFD0198-BLK1)			Prepa	ired: 15-Api	r-2017 An	alyzed: 17-	Apr-2017 10	5:11		
Total Phosphorus	0.0100	0.00800	mg-P/L			•	*			*
Blank (BFD0198-BLK2)			Prepa	ired: 15-Apr	r-2017 An	alyzed: 17-	Apr-2017 16	5:36		
Total Phosphorus	0.0100	0.00800	mg-P/L							*
DL (BFD0198-BLK3)			Prepa	red: 15-Ap	r-2017 An	alyzed: 17-	Apr-2017 10	5:44		
Total Phosphorus	0.00800	0.00800	mg-P/L							*
Blank (BFD0198-BLK4)			Prepa	red: 15-Ap	r-2017 An	alyzed: 17-	Apr-2017 10	5:47		
Total Phosphorus	0.0100	0.00800	mg-P/L							*
LCS (BFD0198-BS1)			Prepa	red: 15-Ap	r-2017 An	alyzed: 17-	Apr-2017 10	5:11		
Total Phosphorus	0.304	0.00800	mg-P/L	0.300		101 %	90-110			В
DL (BFD0198-BS2)			Prepa	red: 15-Apr	r-2017 An	alyzed: 17-	Apr-2017 10	5:37		
Total Phosphorus	0.300	0.00800	mg-P/L	0.300		100 %	90-110			В
DL (BFD0198-BS3)			Prepa	red: 15-Ap	r-2017 An	alyzed: 17-	Apr-2017 10	5:45		
Total Phosphorus	0.304	0.00800	mg-P/L	0.300		101 %	90-110			В
LCS (BFD0198-BS4)			Prepa	red: 15-Ap	r-2017 An	alyzed: 17-	Apr-2017 10	5:48		
Total Phosphorus	0.304	0.00800	mg-P/L	0.300		101 %	90-110			В

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Wet Chemistry - Quality Control

Batch BFD0422 - SM 4500-P B-5 Persulfate

Instrument: UV1800-2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFD0422-BLK1)			Prepa	red: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 13	3:33		
Total Phosphorus	ND	0.00800	mg-P/L	1			1			U
Blank (BFD0422-BLK2)			Prepa	ired: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 13	3:52		
Total Phosphorus	ND	0.00800	mg-P/L							U
DL (BFD0422-BLK3)			Prepa	red: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 14	1:00		
Total Phosphorus	ND	0.00800	mg-P/L							U
Blank (BFD0422-BLK4)			Prepa	red: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 14	k:01		
Total Phosphorus	ND	0.00800	mg-P/L							U
LCS (BFD0422-BS1)			Prepa	ired: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 13	3:33		
Total Phosphorus	0.294	0.00800	mg-P/L	0.300		98.0 %	90-110			
DL (BFD0422-BS2)			Prepa	red: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 13	3:52		
Total Phosphorus	0.296	0.00800	mg-P/L	0.300		98.7 %	90-110			
DL (BFD0422-BS3)			Prepa	red: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 14	1:00		
Total Phosphorus	0.294	0.00800	mg-P/L	0.300		98.0 %	90-110			
LCS (BFD0422-BS4)			Prepa	ired: 18-Ap	r-2017 An	alyzed: 19-	Apr-2017 14	1:02		
Total Phosphorus	0.296	0.00800	mg-P/L	0.300		98.7 %	90-110			

Analytical Resources, Inc.

Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Wet Chemistry - Quality Control

Batch BFD0538 - SM 4500-P B-5 Persulfate

Instrument: UV1800-2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BFD0538-BLK1)			Prepa	red: 21-Ap	r-2017 An	alyzed: 22-	Apr-2017 14	1:30		
Total Phosphorus	ND	0.00800	mg-P/L			•	*			U
Blank (BFD0538-BLK2)			Prepa	ired: 21-Apr	r-2017 Ana	alyzed: 22-	Apr-2017 15	5:04		
Total Phosphorus	ND	0.00800	mg-P/L							U
DL (BFD0538-BLK3)			Prepa	ired: 21-Ap	r-2017 Ana	alyzed: 22-	Apr-2017 15	5:12		
Total Phosphorus	ND	0.00800	mg-P/L							U
Blank (BFD0538-BLK4)			Prepa	red: 21-Ap	r-2017 An	alyzed: 22-	Apr-2017 15	5:14		
Total Phosphorus	ND	0.00800	mg-P/L							U
LCS (BFD0538-BS1)			Prepa	ired: 21-Apr	r-2017 Ana	alyzed: 22-	Apr-2017 14	1:31		
Total Phosphorus	0.296	0.00800	mg-P/L	0.300		98.7 %	90-110			
DL (BFD0538-BS2)			Prepa	red: 21-Ap	r-2017 An	alyzed: 22-	Apr-2017 15	5:05		
Total Phosphorus	0.296	0.00800	mg-P/L	0.300		98.7 %	90-110			
DL (BFD0538-BS3)			Prepa	red: 21-Ap	r-2017 An	alyzed: 22-	Apr-2017 15	5:13		
Total Phosphorus	0.298	0.00800	mg-P/L	0.300		99.3 %	90-110			
LCS (BFD0538-BS4)			Prepa	red: 21-Ap	r-2017 An	alyzed: 22-	Apr-2017 15	5:15		
Total Phosphorus	0.296	0.00800	mg-P/L	0.300		98.7 %	90-110			

Analytical Resources, Inc.

WA-DW

Herrera Environmental Consultants	Project: Lake Whatcom North Shore Testing	
2200 6th Avenue, Suite 1100	Project Number: 16-06326-000	Reported:
Seattle, WA 98121	Project Manager: Rob Zisette	24-Apr-2017 12:15

Certified Analyses included in this Report

Ecology - Drinking Water

Analyte	Certifications		
EPA 300.0 in V	Vater		
Bromide	DoD-ELAP,WADOE,NELA	Р	
Chloride	DoD-ELAP,WADOE,WA-D	W,NELAP	
SM 4500-P E-9	9 in Water		
Total Phosphe	orus WADOE,NELAP		
Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
	DoD Environmental Laboratory Approximation Dragram	66169	03/30/2017
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	00105	00/00/2011
DoD-ELAP NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

C558

06/30/2017

Analytical Report

Herrera Environmental Consultants 2200 6th Avenue, Suite 1100 Seattle, WA 98121 Project: Lake Whatcom North Shore Testing Project Number: 16-06326-000 Project Manager: Rob Zisette

Reported: 24-Apr-2017 12:15

Notes and Definitions

*	Flagged value is not within established control limits.

- B This analyte was detected in the method blank.
- D The reported value is from a dilution
- U This analyte is not detected above the applicable reporting or detection limit.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.

4985 SW 74th Court, Miami, FL 33155 USA Tel: (1) 786-220-0379, Fax: (1) 786-513-2733, Email: info@sourcemolecular.com

Preliminary Interpretation of Human Fecal Pollution ID[™] Results

Detection and quantification of the fecal Human gene biomarker for Human fecal contamination by Droplet Digital Polymerase Chain Reaction (ddPCR) DNA analytical technology

> Submitter: Herrera Environmental Consultants Date Received: March 31, 2017 Report Generated: April 7, 2017

SM #	Client #	Approximate Contribution of Human Fecal Pollution in Water Sample	Comment
SM-7C31005	C1	Not Detected	Human fecal biomarkers not detected
SM-7C31007	1L	Not Detected	Human fecal biomarkers not detected
SM-7C31008	2D	Not Detected	Human fecal biomarkers not detected
SM-7C31009	3D	Not Detected	Human fecal biomarkers not detected
SM-7C31010	4D	Moderate Concentration	Moderate levels of Human fecal biomarker(s)
SM-7C31011	5D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C31012	6D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C31014	8D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C31015	9D	Not Detected	Human fecal biomarkers not detected
SM-7C31016	10D	Low Concentration	Low levels of 2 Human fecal biomarkers
SM-7C31017	11D	Not Detected	Human fecal biomarkers not detected
SM-7C31018	12D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C31019	13D	Not Detected	Human fecal biomarkers not detected
SM-7C31020	14D	Low Concentration	Low levels of 1 Human fecal biomarker
SM-7C31021	OSS (Raw Sewage)	High Concentration	High levels of Human fecal biomarker(s)

Limitation of Damages – Repayment of Service Price

It is agreed that in the event of breach of any warranty or breach of contract, or negligence of Source Molecular Corporation, as well as its agents or representatives, the liability of the company shall be limited to the repayment, to the purchaser (submitter), of the individual analysis price paid by him/her to Source Molecular Corp. The company shall not be liable for any damages, either direct or consequential. Source Molecular Corp. provides analytical services on a PRIME CONTRACT BASIS ONLY. Terms are available upon request. The sample(s) cited in this report may be used for research purposes after an archiving period of 3 months from the date of this report. Research includes, but is not limited to internal validation studies and peer-reviewed research publications. Anonymity of the sample(s), including the exact geographic location will be maintained by assigning an arbitrary internal reference. These anonymous samples will only be grouped by state / province of origin for research purposes. The client must contact Source Molecular in writing within 10 days from the date of this report if he/she does not wish for their submitted sample(s) to be used for any type of future research.

4985 SW 74th Court, Miami, FL 33155 USA Tel: (1) 786-220-0379, Fax: (1) 786-513-2733, Email: info@sourcemolecular.com

Human Fecal Pollution ID[™] Quantification

Detection and quantification of the fecal Human gene biomarker for Human fecal contamination by Droplet Digital Polymerase Chain Reaction (ddPCR) DNA analytical technology

Submitter: Herrera Environmental Consultants Date Received: March 31, 2017 Report Generated: April 7, 2017

SM #	Client #	Analysis Requested	Target	Marker Quantified (copies/100 ml)	DNA Analytical Results
SM-7C31005	C1	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31007	1L	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31008	2D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31009	3D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31010	4D	Human Bacteroidetes ID 1	Dorei	2.17E+04	Present
SM-7C31011	5D	Human Bacteroidetes ID 1	Dorei	1.12E+02	Present
SM-7C31012	6D	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C31014	8D	Human Bacteroidetes ID 1	Dorei	8.70E+01	Present
SM-7C31015	9D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31016	10D	Human Bacteroidetes ID 1	Dorei	<loq< td=""><td>Present</td></loq<>	Present
SM-7C31017	11D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31018	12D	Human Bacteroidetes ID 1	Dorei	1.07E+02	Present
SM-7C31019	13D	Human Bacteroidetes ID 1	Dorei	ND	Absent
SM-7C31020	14D	Human Bacteroidetes ID 1	Dorei	2.78E+02	Present
SM-7C31021	OSS (Raw Sewage)	Human Bacteroidetes ID 1	Dorei	1.46E+03	Present
SM-7C31022	C1	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31024	1L	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31025	2D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31026	3D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31027	4D	Human Bacteroidetes ID 2	EPA	1.61E+03	Present
SM-7C31028	5D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31029	6D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31031	8D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31032	9D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31033	10D	Human Bacteroidetes ID 2	EPA	9.96E+03	Present
SM-7C31034	11D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31035	12D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31036	13D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31037	14D	Human Bacteroidetes ID 2	EPA	ND	Absent
SM-7C31038	OSS (Raw Sewage)	Human Bacteroidetes ID 2	EPA	1.41E+05	Present

ND: Not Detected

<LOQ: Detected below level of quantification

Laboratory Comments Submitter: Herrera Environmental Consultants Report Generated: April 7, 2017

Negative Results

In sample(s) classified as negative, the human-associated Bacteroidetes gene biomarker(s) was either not detected in test replicates, one replicate was detected at a concentration below 3 copies/copies/20µL and the other was not, or one replicate was detected at a concentration above 3 copies/copies/20µL and the other was not after repeated analysis. It is important to note that a negative result does not mean that the sample does not definitely have human fecal contamination. Only repeated sampling (both during wet and dry sampling events) will enable you to draw more definitive conclusions as to the contributor(s) of fecal pollution.

In order to strengthen the result, a negative sample should be analyzed further for human fecal contamination with other DNA analytical tests. A list of human fecal ID tests can be found at **www.sourcemolecular.com/human**.

Positive Results

In sample(s) classified as positive, the human-associated Bacteroidetes gene biomarker(s) was detected in both test replicates suggesting that human fecal contamination is present in the water sample(s). The biomarker(s) serve as an indicator of the targeted fecal pollution, but the presence of the biomarker does not signify conclusively the presence of that form of fecal pollution. Only repeated sampling (both during wet and dry sampling events) will enable you to draw more definitive conclusions as to the contributor(s) of fecal pollution.

Detected Not Quantified (DNQ) Results

In sample(s) classified as detected not quantified (DNQ), the human-associated Bacteroidetes biomarker was detected in both test replicates but in low, non-quantifiable quantities. This result indicates that fecal indicators associated with human were present in the sample(s) but in low concentrations.

Human Fecal Reference Samples

The client is encouraged to submit samples from the surrounding wastewater facilities and/or septic systems in order to gain a better understanding of the concentration of the human-associated fecal Bacteroidetes genetic marker as well as the concentration of the general fecal Bacteroidetes genetic marker in the geographic region of interest. A more precise interpretation would be available to the client with the submittal of such baseline samples.

Result Interpretations

Quantitative results are reported along with interpretations. Interpretations are given as "negative", "trace", "low concentration", "moderate concentration", or "high concentration" based on the concentration of the genetic markers found in the water samples.

Additional Testing

A portion of all samples has been frozen and will be archived for 3 months. The client is encouraged to perform additional tests on the sample(s) for other hosts suspected of contributing to the fecal contamination. A list of available tests can be found at www.sourcemolecular.com/tests

DNA Analytical Method Explanation

All reagents, chemicals, and apparatuses were verified and inspected beforehand to ensure that no false negatives or positives could be generated. In that regard, positive and negative controls were run to attest the integrity of the analysis. All inspections and controls tested negative for possible extraneous contaminants.

Each submitted water sample was filtered through 0.45-micron membrane filters. Each filter was placed in a separate, sterile 2ml disposable tube containing a unique mix of beads and lysis buffer. The sample was homogenized and the DNA extracted and purified.

Sample DNA was amplified and analyzed with a Bio-Rad QX200 Droplet Digital PCR System (Bio-Rad Laboratories, Inc.). Samples were processed in duplicate in a 20µL reaction containing DNA extract, forward primer, reverse primer, probe (as appropriate) and an optimized buffer solution. Absolute quantification was achieved by software Poisson Distribution Analysis.

For quality control purposes, a positive control consisting of genomic or synthetic DNA, and three negative controls consisting of PCR-grade water were run alongside the sample(s) to monitor for any false negatives or false positives.

Human Bacteroidetes ID[™] Species: B. dorei

The Human Bacteroidetes ID[™] Species: B. dorei service targets the species Bacteroides dorei. B. dorei is an anaerobe that is frequently shed from the gastrointestinal tract and isolated from human feces worldwide. It is a newly discovered species that is widely distributed in the USA.^{1,2} The human-associated marker DNA sequence is located on the 16S rRNA gene of *B. dorei.*³ The marker is the microbial source tracking (MST) marker of choice for detecting human fecal pollution due to its exceptional sensitivity and specificity. Internal validations have been conducted on hundreds of sewage, septage, human and animal host fecal samples collected from throughout the U.S and archived in the Source Molecular fecal bank. The marker has also been evaluated in both inland and coastal waters. A recent, comprehensive, multilaboratory MST method evaluation study, exploring the performance of current MST methods, concluded the B. dorei PCR assay to be the top performing human-associated assay amongst those tested. The success and consistency of this marker in numerous studies around the world^{1,3,4} makes the **Human** Bacteroidetes IDTM Species: B. dorei service the primary service for identifying human fecal pollution at Source Molecular.

Fecal Bacteroidetes are considered for several reasons an interesting alternative to more traditional indicator organisms such as E. coli and Enterococci.⁵ Since they are strict anaerobes, they are indicative of recent fecal contamination when found in water systems. This is a particularly strong reference point when trying to determine recent outbreaks in fecal pollution. They are also more abundant in feces of warmblooded animals than E. coli and Enterococci.

The Human Bacteroidetes ID[™] service is designed around the principle that fecal Bacteroidetes are found in large quantities in feces of warm-blooded animals.^{3,5,6,7,8} Furthermore, certain strains of Bacteroidetes have been found to be associated with humans.^{3,6} As such, these bacterial strains can be used as indicators of human fecal contamination.

Accuracy of the results is possible because the method amplifies DNA into a large number of small copies of the gene biomarker of interest. This is accomplished with small pieces of DNA called primers that are complementary and specific to the unique B. dorei DNA sequence. Through a heating process called thermal cycling, the double stranded DNA is denatured, hybridized to the complementary primers and amplified to create many copies of the DNA fragment desired. If the primers are successful in finding a site on the DNA fragment that is specific to the B. dorei DNA sequence, then billions of copies of the DNA fragment will be available, detected and quantified.

To strengthen the validity of the results, additional tests targeting other high-ranking, human-associated Bacteroidetes species should be performed, such as

Human Bacteroidetes ID[™] Species: *B. stercoris*, Human Bacteroidetes ID[™] Species: B. fragilis, and

Human Bacteroidetes ID[™] Species: B. thetaiotaomicron.

¹Boehm, A., Fuhrman, J., Mrse, R., Grant, S. Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environ Sci Technol. 2003 37: 673-680.

²Bakir, M., Sakamoto, M., Kitahara, M., Matsumoto, M., Benno, Y. Bacteroides dorei sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2006 56: 1639-1641.

³ Bernhard, A., Field, K. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 2000b 66: 4571-4574.

⁴Ahmed, w., Masters, N., Toze, S. Consistency in the host specificity and host sensitivity of the Bacteroides HF183 marker for sewage pollution tracking. Lett. Appl. Microbiol. 2012 55: 283-289.

⁵ Scott, T., Rose, J., Jenkins, T., Farrah, S., Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.

⁶ Bernhard, A., Field, K. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 2000a 66: 1587-1594. ⁷ Eccentry L. Voytek M. A Comparison of Bacteroides-Prevetella 16S rPNA Constic Markers for Fecal Samples from Different Animal

Human Bacteroidetes ID[™]: EPA Developed Assay

The Human Bacteroidetes IDTM: EPA Developed Assay service targets a functional gene biomarker in Bacteroidales-like anaerobic bacteria that is present in high concentrations in the human gut. The U.S. Environmental Protection Agency (U.S. EPA) was the first to target the biomarker using Polymerase Chain Reaction (PCR) technology in order to detect ground and surface waters impacted by human fecal pollution.¹ Since it's development, the assay has been used succesfully around the U.S to identify fecal pollution originating from human sources, such as sewage and septage wastewaters.

The U.S. EPA Developed assay has been shown to be highly associated with human fecal pollution. It has successfully been validated in multiple nationwide studies using at least 300 individual reference fecal material from 22 different animal species known to commonly contaminate environmental waters.^{1,2} A reported 99.2% specificity to human fecal material makes this one of the leading assays to confirm the presence of fecal contamination that is of human origin.¹ The *Bacteroidales*-like bacteria is widely distributed. It was detected in 100% of hundreds of sewage and human reference fecal samples collected from more than 20 human populations, making it highly sensitive. Internal validations have also been conducted on hundreds of wastewater, human and animal host fecal samples archived in the Source Molecular fecal bank.

Fecal anaerobic bacteria are considered for several reasons an interesting alternative to more traditional fecal indicator organisms such as E. coli and Enterococci.³ Since they are strict anaerobes, they are indicative of recent fecal contamination when found in water systems.³ This is a particularly strong reference point when trying to determine recent outbreaks in fecal pollution. They are also more abundant in feces of warm-blooded animals than E. coli and Enterococci.

The Human Bacteroidetes ID[™]: EPA Developed Assay service is designed around the principle that fecal Bacteroidales-like bacteria are found in large quantities in feces of warm-blooded animals.^{4,5} Furthermore, certain strains have been shown to be associated with humans.^{4,5} As such, these bacterial strains can be used as indicators of human fecal contamination. An advantage of the Human Bacteroidetes IDTM service is that the entire portion of water sampled is filtered to concentrate bacteria. As such, this method avoids the randomness effect of culturing and selecting bacterial isolates. This is an advantage for highly contaminated water systems with potential multiple sources of fecal contamination.

Accuracy of the results is possible because the method amplifies DNA into a large number of small copies of the gene biomarker of interest. This is accomplished with small pieces of DNA called primers that are complementary and specific to the unique B. dorei DNA sequence. Through a heating process called thermal cycling, the double stranded DNA is denatured, hybridized to the complementary primers and amplified to create many copies of the DNA fragment desired. If the primers are successful in finding a site on the DNA fragment that is specific to the B. dorei DNA sequence, then billions of copies of the DNA fragment will be available, detected and quantified.

To strengthen the validity of the results, additional tests targeting other high-ranking, human-associated Bacteroidetes species should be performed, such as Human Bacteroidetes ID[™] Species: *B. dorei*, Human Bacteroidetes ID[™] Species: *B. fragilis*, and Human Bacteroidetes ID[™] Species: *B. stercoris*

¹ Shanks, O., Kelty, C., Sivaganesan, M., Varma, M. and Haugland, R. Quantitative PCR for Genetic Markers of Human Fecal Pollution. Appl. Environ. Microbiol. 2009 75: 5507-5513.

²Layton, B., Cao, Y., Ebentier, D., Hanley, K., Ballesté, E., Brandão, J., et al. Performance of Human Fecal Anaerobe-Associated PCR-Based Assays in a Multi-Laboratory Method Evaluation Study. Water Research. 2013 In Press. ³Scott, T., Rose, J., Jenkins, T., Farrah, S. and Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.

 ³ Scott, T., Rose, J., Jenkins, T., Farrah, S. and Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002 68: 5796-5803.
 ⁴ Bernhard, A., Field, K. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 2000a 66: 1587-1594.
 ⁵ Bernhard, A., Field, K. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella

genes encoding 16S rRNA. Appl Environ Microbiol 2000b 66: 4571-4574

Data Quality Assurance Worksheet

		By	G. Catarra	
Project Name/No./Client:	Lake Whatcom / 16-06326-000 / LWWSD.	Date	4/3/2017	Page <u>1</u> of <u>1</u>
Laboratory/Parameters:	LabCor, Inc. / fecal bacteria and E. coli; ARI / TP, Cl/Br; Source Molecular / MST	Checked:	initials	
Sample Date/Sample ID:	3/29/2017 / 18 samples		date	

		Pre-preser Holding T (hours	limes	Total Ho Times (d	•	Method <u>Blanks</u>	Blanks Recovery (Lab Con Samples Re (%)	covery	Lab Dupl RPD (Field Dup RPD (
Parameter	Completeness/ Methodology	Reported	Goal	Reported	Goal	Reporting Limit	Reported	Goal	Reported	Goal	Reported	Goal	Reported	Goal ¹	ACTION		
Fecal coliform	OK/ SM9222D	NA	NA	1	≤1	≤1.0 2 CFU /100ML	NA	NA	NA	NA	NA ≤35		NA	NA	STATIONS 1, 3, 5-11, 13, 15 "J" due to plate counts. Results calculated per Method.		
E. coli	OK/ SM9222D	NA	NA	1	≤1	≤1.0 2	NA	NA	NA	NA	NA	≤35	NA	NA	STATIONS 1, 3, 5-9, 11, 13, 15 "J" due to plate counts. Results calculated per method.		
Total Phosphorus	OK / EPA 365.1	NA	NA	19-24	≤28	≤8.0 - <mark>10</mark> 8.0 μg/L	NA	±20	98-101	±10	NA	≤20	NA	NA	NO FLAG FOR MB, SAMPLES <10X MB WERE REPREPPED AND REANALYZED.		
Chloride	OK / EPA 300.0	NA	≤12	16	≤28	0.103 0.1 mg/L	109	±20	98	±10	0.23	≤20	NA	NA	NO FLAG FOR MB, ALL SAMPLES >10X MB.		
Bromide	OK/ EPA 300.0	NA	NA	16	≤28	≤0.1 0.1 mg/L	97	±20	101	±10	NC	≤20	NA	NA	None		
B. Dorei	OK / Digital qPCR	<48	≤48	NA	NA	≤0.01 3	NA	NA NA		NA	NA ≤ 30 cov		NA	NA	None		
EPA Assay	OK / Digital qPCR	<48	≤48	NA	NA	≤0.05 3	NA	NA NA		NA	NA	≤ 30 cov	NA	NA	None		

NA – not applicable or not available; NC – not calculable due to one or more values below the detection limit; NS – field duplicate not sampled.

PJJ https://herrerainc.sharepoint.com/16-06326-000/shared documents/report/apxb/b16 event 3 qa worksheet.docx

APPENDIX C

Sample Results Database

-	1	Sample						Temp	1		Sp Cond	Turbidity	1	Fecal colifo	rm	E coli	EC/	C B dor	oi	B EP	٥٨	Bacteroidetes	Total P	Chlor	ida Bro	mide Sample Analysis
Station	Station Type	ID	Event	Date	Time	Lat (°)	Long (°)	(°C)	DO (mg/L)	Hq	(uS/cm)	(FNU)	OB (RFUB)	(CFU/100m		(CFU/100m				(copies/1		Lab Category	(mg/L)	(mg/		g/L) Code
OSS	Septage	OSS	2	3/15/2017	15:50	48.73255	-122.31705	7.8	0.30	6.96	963	26.81	632.9	1500000	1	1500000 J	L) 1101	1.0 1030	50111L)	55000		Moderate	10.3	46.8		00 U All parameters
OSS	Septage	OSS	3	3/29/2017	15:41	48.73253	-122.31709	9.1	0.61	6.91	943.8	32.3	686.0	4080000	2	4080000 >		00 1460		141000		High	10.3	40.8		00 U All parameters
1L	Lake	1L	3	3/29/2017	10:56	48.73429	-122.31767	6.9	11.31	6.92	56.6	0.58	61.7	9	-	< 000000+ ۱ P			ND		ND	Not detected	0.012	2.56		
2L	Lake	4L	2	3/15/2017	11:35	48.73649	-122.32124	7.2	11.14	7.08	64.8	2.95	90.51	5	U	50	J		ND	-	ND	Not detected	0.018	2.59		00 U All parameters
3L	Lake	3L	1	1/19/2017	11:44	48.7369	-122.32196	6.8	11.59	7.39	60.9	2.7	81.17	46	-	42		0.9								Field + Fecals
4L	Lake	11L	2	3/15/2017	13:56	48.74635	-122.33769	7.2	11.67	7.16	59.7	0.43	73.0	5	J	5 J		1.0 3	<	0	ND	Low	0.024 J	2.63	0.1	00 U All parameters
5L	Lake	12L	2	3/15/2017	14:09	48.74685	-122.33852	7.7	11.16	7.08	61.4	1.71	227.7	9	J	9 J		1.0 60		0	ND	Low	0.030	3.05	0.1	00 U All parameters
C1	Lake	C1	1	1/19/2017	9:26	48.72298	-122.30225	6.7	10.42	7.20	50.7	0.3	8.16	2	U	2 U	J	1.0								Field + Fecals
C1	Lake	C1	2	3/15/2017	9:41	48.72372	-122.30253	6.3	11.55	7.46	57.3	0.41	43.64	5	U	5 U	J	1.0 3	<	0	ND	Low	0.008 U	2.68	0.1	00 U All parameters
C1	Lake	C1	3	3/29/2017	10:01	48.72375	-122.30257	6.6	11.77	7.41	56.7	0.6	41.1	2	U	2 U	J	.00 0	ND	0	ND	Not detected	0.008 U	2.59	0.1	00 U All parameters
C2	Lake	C2	1	1/19/2017	9:32	48.72408	-122.30284	6.7	10.60	7.21	57.7	0.2	43.43	2	U	2 U		1.0								Field + Fecals
C3	Lake	C3	1	1/19/2017	9:40	48.72568	-122.30415	6.7	10.60	7.20	58.1	0.2	42.4	4	J	4 J		1.0								Field + Fecals
C3	Lake	C2	2	3/15/2017	9:50	48.72564	-122.30418	6.3	11.43	7.39	57.6	0.44	44.03	5	U	5 U			ND	0	ND	Not detected	0.008 U	2.68	0.1	· · ·
C3	Lake	C2	3	3/29/2017	10:12	48.72568	-122.30408	6.7	11.67	7.31	57.1	0.25	45.5	2	U	2 U		00								Field + Fecals
429	Discharge	15D	3	3/29/2017	14:47	48.74885	-122.34624	8.9	11.47	6.27	0.2	25.6	297	262	J	260 J		0.99						-		Field + Fecals
430	Discharge	14D	1	1/19/2017	13:53	48.74865	-122.34364	5.5	11.85	6.94	61.3	9.1	100.1	125	┞╴┨	100		0.8	,	-		Low	0.010	2.70		Field + Fecals
430 430	Discharge	14D 14D	2	3/15/2017 3/29/2017	14:40 14:28	48.74866 48.74871	-122.34368 -122.34364	7.2	11.99 11.47	7.33	60.3 57.0	1.26 11.4	106.1 229	7 800	J	7 J 82	-	1.0 3 0.10 278	<		ND ND	Low Low	0.016	2.70		00 U All parameters
430	Discharge Discharge	14D 13D	3	3/29/2017 1/19/2017	14:28	48.74871	-122.34364	8.4 5.2	11.47	7.00	41.4	6.4	229	800 18	┞──╀	82 14 J		0.8		0	טאו	LUW	0.088	1.78	J 0.10	Field + Fecals
437	Discharge	13D 13D	2	3/15/2017	13:44	48.74736	-122.33991	7.6	12.17	7.05	41.4	5.68	264.1	18	1	14 J 9 I			ND	0	ND	Not detected	0.032	1.96	0.1	00 U All parameters
437	Discharge	13D 13D	3	3/29/2017	14:20	48.74738	-122.33993	8.0	11.62	7.18	37.7	7.7	270.7	20	i l	20 J			ND	-	ND	Not detected	0.052	1.30		00 U All parameters
440	Discharge	13D 12D	1	1/19/2017	13:39	48.7469	-122.3386	5.3	11.88	6.85	53.5	3.6	2,0.7	50	j	32 J		0.6		0			0.000	1.50		Field + Fecals
440	Discharge	12D	3	3/29/2017	13:57	48.7469	-122.33854	8.4	11.14	7.04	49.1	5.11	270.8	44		44		00 107		0	ND	Low	0.062	1.80	0.1	
449	Discharge	11D	1	1/19/2017	13:29	48.74545	-122.33574	6.6	11.97	7.17	58.8	34.7		190	J	180		0.9		-						Field + Fecals
449	Discharge	10D	2	3/15/2017	13:35	48.74546	-122.33574	7.9	11.87	7.37	59.2	6.63	196.5	2	J	2 J		1.0								Field + Fecals
449	Discharge	11D	3	3/29/2017	13:39	48.74547	-122.33577	7.6	11.89	7.20	48.6	67.15	148.7	20	J	18 J		0.90 0	ND	0	ND	Not detected	0.098	1.71	0.1	00 U All parameters
453	Discharge	9D	2	3/15/2017	13:18	48.74528	-122.33444	6.9	10.48	6.60	59.3	1.38	111.2	38	J	38 J		1.0 3	<	4050		Low	0.014	2.82	0.1	00 U All parameters
453	Discharge	10D	3	3/29/2017	13:25	48.7453	-122.33442	7.6	10.75	6.43	51.4	6.52	157.2	124	J	110).89 3	<	9960		Low	0.054	2.17	0.1	00 U All parameters
462	Discharge	10D	1	1/19/2017	13:16	48.74376	-122.33084	5.4	12.21	7.13	57.7	29.7		82	J	64 J		0.8								Field + Fecals
462	Discharge	8D	2	3/15/2017	13:03	48.74375	-122.33079	7.2	11.94	7.33	59.2	10.17	225.1	4	J	4 J		1.0 3		-	ND	Low	0.056	2.08		00 U All parameters
462	Discharge	9D	3	3/29/2017	13:05	48.74385	-122.33078	7.6	11.77	7.26	49.4	39.41	207.1	15	J	11 J			ND	0	ND	Not detected	0.218	1.46	0.1	00 U All parameters
466	Discharge	9D	1	1/19/2017	13:07	48.74336	-122.33008	5.4	11.91	6.84	58.1	6.8		73	J	68 J		0.9								Field + Fecals
466	Discharge	7D	2	3/15/2017	12:51	48.74335	-122.33005	6.8	11.47	6.96	58.6	14.41	146.8	198	J	191 J	_		ND	-	ND	Not detected	0.050	2.41	-	
466	Discharge	8D	3	3/29/2017	12:55	48.74333	-122.33004	7.7	11.39	6.94	50.7	17.83	163.2	127	J	122 J		0.96 87		0	ND	Low	0.088	1.87	0.1	· · ·
481	Discharge	8D 1-8D	1	1/19/2017	12:45	48.74184	-122.32775	6.0	11.88	6.90	67.2 65.8	10.9	188.03	5	J	5 J		1.0								Field + Fecals
481 481	Discharge Discharge	1-8D 1-8D	2	3/15/2017 3/29/2017	12:43 12:45	48.74184 48.74184	-122.32772 -122.32774	7.3 7.4	11.72 11.85	7.02 7.11	57.7	3.7 17.0	154 160											-	+	Field only Field only
481	Discharge	1-8D 7D		1/19/2017	12:45	48.74184	-122.32774	6.4	11.85	7.09	52.5	17.0	212.8	5		5 U	1	1.0								Field + Fecals
488	Discharge	1-7D	2	3/15/2017	12:35	48.74089	-122.32634	7.5	11.88	7.21	49.1	8.1	177	5	<u> </u>	50	,	1.0								Field only
488	Discharge	1-7D	3	3/29/2017	12:35	48.74098	-122.32636	7.4	11.87	7.21	49.1	15.4	140		┝─┤											Field only
492	Discharge	6D	1	1/19/2017	12:27	48.74084	-122.32623	6.5	11.92	7.18	41.3	14.1	194.52	68	J	55 J		0.8								Field + Fecals
492	Discharge	6D	2	3/15/2017	12:26	48.74082	-122.32623	7.6	11.89	7.22	40.3	2.31	174.6	7	J	7 J			ND	0	ND	Not detected	0.024	1.15	0.1	00 U All parameters
492	Discharge	7D	3	3/29/2017	12:33	48.74081	-122.32622	7.8	11.74	7.20	38.9	13.81	163.2	2	J	2 J		00								Field + Fecals
495	Discharge	5D	1	1/19/2017	12:17	48.74035	-122.3254	6.5	11.07	7.00	115.6	3.6	254.56	5	U	5 U		1.0								Field + Fecals
495	Discharge	1-5D	2	3/15/2017	12:07	48.74028	-122.32543	7.4	11.28	7.12	102.0	2.1	212													Field only
509	Discharge	4D	1	1/19/2017	11:58	48.73824	-122.32341	6.6	11.84	7.21	65.1	15.8	219.16	55	J	27 J		0.5								Field + Fecals
509	Discharge	5D	2	3/15/2017	12:15	48.73822	-122.32336	7.8	11.75	7.38	61.8	7.58	191.9	4	J	4 J		1.0								Field + Fecals
509	Discharge	6D	3	3/29/2017	12:10	48.73803	-122.32349	8.1	11.59	7.27	59.1	22.21	187.1	342	J	342 J		00 3			ND	Low	0.086	1.42		00 U All parameters
518	Discharge	3D	2	3/15/2017	11:20	48.73634	-122.32094	8.2	11.64	7.24	71.8	8.5	192.5	44	\square	13 J			ND	-	ND	Not detected	0.048	2.16		00 U All parameters
518	Discharge	5D	3	3/29/2017	11:50	48.73637	-122.32088	8.2	11.51	7.25	66.7	15.3	223.4	29	J	29 J		00 112		-	ND	Low	0.066	1.77		00 U All parameters
520	Discharge	2D	2	3/15/2017	11:05	48.73556	-122.31964	8.7	11.09	7.05	81.9	4.36	147.2	100	$ \downarrow \downarrow$	7 J		0.1 17400		1450		Moderate	0.052	3.47		00 U All parameters
520	Discharge	4D	3	3/29/2017	11:36	48.73561	-122.31953	8.9	10.92	6.87	75.3	8.26	196.8	62	\vdash	62		00 21700		1610		Moderate	0.064	3.10	0.1	00 U All parameters
521	Discharge	2D	1	1/19/2017	11:32	48.73633	-122.32094	6.2	11.91	7.24	67.4	10.8	248.34	135	┝─┤	105	_	0.8							++-	Field + Fecals
521	Discharge	1-2D	2	3/15/2017	11:02	48.73558	-122.31968	6.9	11.35	7.19	61.4	0.9	51.0	10	┞─┤	401		00 0		~		Not data at a d	0.01.4	2.00		Field only
521	Discharge	3D	3	3/29/2017	11:21	48.73546	-122.31934	7.6 7.4	10.83	6.80	66.2	1.57	94.2	16	J	16 J 114			ND ND		ND ND	Not detected	0.014 0.036	2.66		00 U All parameters
525 525	Discharge Discharge	1D 2D	2	3/15/2017 3/29/2017	10:50 11:08	48.73466 48.73478	-122.31799 -122.31793	7.4	10.74 10.62	6.62 6.56	64.4 64.9	3.84 5.06	150.8 174.5	114 112	┝─┤	114			ND ND		ND ND	Not detected	0.036	2.63		00 U All parameters 00 U All parameters
525A	Discharge	2D 1D	3 1	3/29/2017 1/19/2017	11:08			6.1	10.62	6.55	70.4	5.06	174.5	112	┝─┤	112		1.0 0		0	שאי	Not detected	0.040	2.30	0.10	Field + Fecals
JZJA	Discharge	10	т	1/15/2017	11.00	40.75471	122.01001	0.1	10.35	0.00	70.4	5.0	130.03	100		143		1.0			I					

TECHNICAL MEMORANDUM

Date:	June 21, 2018
То:	Bill Hunter, Lake Whatcom Water and Sewer District
From:	Rob Zisette, Herrera Environmental Consultants
Subject:	North Shore On-Site Septic System Phosphorus Loading Analysis

INTRODUCTION

Herrera Environmental Consultants (Herrera) recently conducted a water quality study for the Lake Whatcom Water and Sewer District that identified contamination of the lake with phosphorus and fecal coliform bacteria from on-site septic systems (OSS) in the North Shore subbasin of Lake Whatcom (Herrera 2017a). The study findings were presented to the Lake Whatcom Data and Information Management Team on September 14, 2017, and to the Whatcom County staff on October 31, 2017.

A draft memorandum was prepared on January 25, 2018 to address comments by the Whatcom County Health Department on the study report and a request by the Lake Whatcom Water and Sewer District to estimate phosphorus loading from OSS in the study area. This final memorandum was prepared to address comments on the draft memorandum and the study report by Whatcom County Public Works (WCPW) (Erika Douglas and Gary Stoyka), Washington Department of Ecology (Steve Hood), and City of Bellingham (Peg Wendling). Attached are responses by Herrera to each of these comments. Also attached is the study database updated to include discharge measurement data used for this phosphorus loading analysis.

STUDY REPORT COMMENT RESPONSES

The Whatcom County Health Department (WCHD) acknowledged that the study report provides useful information (Wolpers 2017). Based on the report findings, WCHD has prioritized operation and maintenance of OSS in the North Shore subbasin. During the winter of 2017–2018, WCHD is contacting property owners, surveying properties, inspecting OSS components, and performing drain field dye tests. Failing OSS will be replaced with a system designed by a licensed OSS designer to meet current OSS regulations.

The problem with this approach is that it primarily addresses failing OSS that result in direct discharge of effluent to surface drainages. An exception is that OSS inspections have identified non-surfacing discharges between septic tanks and drainfields. The study results and the poor soil conditions discussed below clearly indicate that OSS effluent is being transported through saturated soils to drainages or the lake by OSS that are not considered to be failing. The fate and transport of phosphorus through saturated soils from septic tank effluent has been well documented in many other studies, and is diagrammed in Figure 1 from a recent review of those studies (Lusk et al. 2017).

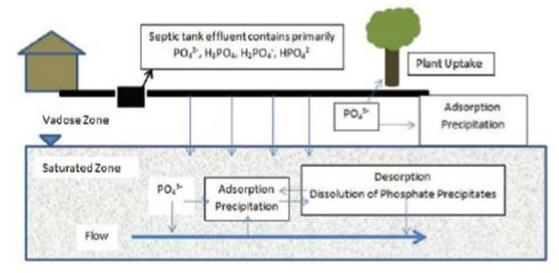


Figure 1. Fate and Transport of Phosphorus in Septic System Effluent.

WCHD commented that the study results did not appear to substantiate the report conclusions because the following factors were not considered:

- 1. Control stations along areas that are currently served by sewer
- 2. Potential upland sources from discharge samples
- 3. Lake Whatcom is not on Ecology's 303(d) list for fecal bacteria
- 4. Phosphorus contribution to surface water quality is *de minimus*. Phosphorus is typically immobilized within the first 2 or 3 feet of soil below the drain field.

Responses to these comments are provided separately in the following sections.

Control Stations

The purpose of control stations is to provide monitoring locations that are not impacted by human fecal sources and serve as background conditions in the lake. Control stations were appropriately located along a shoreline that has no development or potential input from human fecal sources. Locating additional monitoring stations along a developed shoreline with sewers

would be a reasonable addition for comparison to stations in the developed shoreline with OSS. However, a sewered shoreline would not serve as a good experimental control for this study because the control should represent an area not impacted by human sources to verify parameter detection limits, and drainage from a sewered area may be impacted by human sources due to unknown cross-connections of the drainage system with sanitary sewers.

If the study is repeated again in the future to evaluate effectiveness of WCHD efforts to control failing OSS in the North Shore Road area, then a sewered area should be monitored in addition to the control stations to evaluate potential impacts of sewered areas on human fecal sources to the lake.

Upland Sources

Potential upland sources of human fecal matter were considered in the study design. There are no OSS located upland from the sampled drainages that would not be connected to sewers. The potential for direct deposit of fecal matter by humans in the study area was recognized in the study report as another potential source of human sources in the collected samples. Homeless persons and recreationalists (e.g., hikers) exhibiting unsanitary practices are examples of potential non-septic sources of human fecal bacteria in surface water drainage from the area. However, an apparent lack of homeless persons and recreationalists in the study area during the cold winter sampling period suggests there was a low probability that detected human sources originated from direct deposit of human fecal matter. In addition, direct deposits of fecal matter by humans is typically on soils that have adsorption capacity and not directly into surface water drainages.

Fecal Bacteria Listing

The study report did not state that Lake Whatcom is on Ecology's 303(d) list of impaired waters for fecal coliform bacteria. Contamination of the lake with fecal coliform bacteria is a significant concern to lake users and water utilities regardless of whether it is currently considered to be impaired by high bacteria concentrations.

Soil Immobilization of Phosphorus

The Soil Conservation Service assessment of shoreline soils around Lake Whatcom indicates that virtually all soils have severe limitations for septic systems (Carlson 2011). The soils are characterized as having a shallow depth (3 feet or less) to bedrock, hard pan, or water table, and are subject to seasonal flooding. These conditions promote phosphorus migration downgradient through soils from OSS drain fields to shallow groundwater that seeps into drainages or the lake. Many of the old OSS in the study area do not meet current WCHD regulations for the minimum vertical distance through soil or minimum horizontal distance to surface waters to allow for adequate immobilization of OSS phosphorus in soils.

The transport of phosphorus from septic systems to surface drainages and Lake Whatcom (see Figure 1) is enhanced by the following conditions present in the North Shore Road area:

- Old septic systems discharging effluent and saturating soils with phosphorus for decades
- Septic systems located close to the lake or a surface drainage, reducing the potential for continued adsorption before reaching the lake or a surface drainage
- An area that receives a high amount of rainfall, frequent soil saturation, and shallow depths to groundwater
- Relatively shallow soils overlying bedrock, which prevents downward flow of contaminated groundwater.
- A steep slope that increases the rate of gravity flow through saturated soils.

PHOSPHORUS LOADING METHODS

The annual total phosphorus (TP) loading to Lake Whatcom from all surface drainage in the North Shore subbasin was estimated to be 181.6 kilograms (kg) or 400 pounds (lbs) by the *Lake Whatcom Watershed Total Phosphorus and Bacteria Total Maximum Daily Loads* (TMDLs) (existing conditions scenario in Table 6 of Ecology 2016). This estimate was based on a Hydrological Simulation Program-Fortran (HSPF) model of land cover and hydrologic conditions present in 2003. The TMDLs are based on loadings in 2003 because loadings vary each year with precipitation and 2003 was a normal precipitation year. TP loadings are estimated by multiplying an average TP concentration for each land cover type to the annual runoff volume from each land cover area.

Herrera estimated the septic system contribution to the North Shore TP loading estimate using flow rates, TP concentrations, and human fecal bacteria deoxyribonucleic acid (DNA) concentrations measured in drainage samples collected in March 2017 for the North Shore OSS leachate detection project. The selected TP loading analysis method was to correct the TP concentration for OSS contaminated discharges to the TP concentration typically observed in uncontaminated discharges, and then compare flow-weighted average TP concentrations in all monitored drainages under existing and OSS corrected conditions. The percent change in TP concentration from existing to OSS corrected conditions was then applied to the 2003 TP loading estimate to calculate the TP loading to Lake Whatcom from septic system leachate in the North Shore subbasin. Flow-weighted average concentrations were used because loadings are directly related to flow and the discharges exhibited a wide range of flow rates, ranging from approximately 0.08 to 10 cubic feet per second (cfs).

The first step in the TP loading analysis was to separate discharge locations into contaminated and uncontaminated discharges based on human fecal bacteria DNA concentrations. Discharges with human Bacteroidetes (either B. dorei or B. EPA markers) detected above the detection limit

of 3 copies per 100 milliliters (copies/100 mL) were considered to be contaminated by OSS leachate. Discharges with no detected human Bacteroidetes were considered to be uncontaminated by OSS leachate. Results for single samples from three discharges (430, 462, and 509) did not fit into either group and were excluded from the analysis because one human Bacteroidetes marker (B. dorei) was detected below the detection limit and the other human Bacteroidetes marker (B. EPA) was not detected in samples from these discharges. Thus, it is not clear whether these three samples were contaminated with OSS or not. In addition, one sample collected on March 29 from discharge 462 was removed from the OSS uncontaminated group because it was an outlier with an unusually high TP concentration of 218 micrograms per liter (μ g/L), compared to a value of 56 μ g/L for the sample collected on March 15 from discharge 462 and a range of 14 to 98 µg/L for all other samples. The two March events were similar hydrologically and neither sample from discharge 462 exhibited high fecal bacteria or human Bacteroidetes marker concentrations. Thus, the sample collected on March 29 may have been contaminated from an unusual high phosphorus source (e.g., direct application of phosphorus fertilizer), rather than OSS or a natural phosphorus source (e.g., phosphorus release from an anoxic wetland). In total, the contaminated group included six discharge locations, and the uncontaminated group included seven discharge locations.

Average flow rates and flow-weighted average TP concentrations were then calculated for each discharge sampled more than once in the contaminated and uncontaminated groups. The flow-weighted average TP concentration was calculated for each discharge location rather than each sample to not bias for discharges sampled twice over those sampled once.

The flow-weighted TP concentrations for discharges in each group were tested to verify that the groups are significantly different. A non-parametric, one-tailed Mann-Whitney U test was used to show that the groups are significantly different (p = 0.069) at an alpha level of 0.10. Thus, there is a 90 percent probability that the median value for the OSS contaminated discharges (64 µg/L) is significantly different than the median value for the uncontaminated discharges (48 µg/L).

The overall existing flow-weighted average TP concentration was then calculated for all discharges to represent all drainage from the North Shore subbasin. The existing flow-weighted average TP concentration for each OSS contaminated discharge was corrected for OSS contamination by reducing it to the median value for the uncontaminated discharges (48 µg/L). Reduction of the OSS-contaminated TP concentration to an OSS-corrected value was performed to estimate the typical reduction in TP loading expected if OSS contaminated discharges because the measured TP concentration was less than the median value for the uncontaminated discharges.

PHOSPHORUS LOADING RESULTS AND REMOVAL COSTS

The TP loading analysis results are presented in Table 1. Correcting TP concentrations for OSS contamination reduced the flow-weighted average TP concentration for discharges from the North Shore subbasin by 10 percent from 77 to 69 µg/L. Applying this percentage to the annual TP loading of 400 pounds/year (using 2003 as a typical year) estimated by the TMDL study for the subbasin results in an annual TP loading of 40 pounds/year from OSS in the subbasin. This amount is considered to be underestimated because it does not account for TP loading from OSS that seep directly into the lake, which was detected by the OSS leachate detection study at some, but likely not all, locations in the lake. The estimated 40 pounds/year from discharges was increased by 25 percent to 50 pounds/year to account for direct seepage into the lake. The 25 percent increase is reasonable because approximately 30 percent of the OSS in the subbasin are located between the lake and North Shore Road where leachate would likely not drain to discharges draining the road ditches.

The annual phosphorus loading rate of 50 pounds/year is similar to the 55 pounds/year from 92 OSS located in shallow soils (3 feet or less) within 150 feet of Lake Whatcom that was estimated for the cost/benefit analysis of phosphorus loading reduction methods (Carlson 2011). The cost/benefit analysis method assumed a TP loading to the lake of 0.6 pounds/year for each of the 92 OSS based on 0.8 pound TP/person/year reaching the drainfield, three persons per house for a total of 2.4 pound TP/OSS/year, and 25 percent of the drainfield TP loading reaching the lake. Agreement among results from both methods suggests that the TP loading method developed from drainage monitoring data collected for this study provides a reasonable estimate of TP loading from OSS in the North Shore subbasin.

The cost of reducing TP loading to Lake Whatcom from the North Shore subbasin was estimated for stormwater treatment and sewer extension. Herrera (2017b) recently evaluated the cost, benefit, and feasibility of stormwater treatment for reducing TP loading to Lake Whatcom. A total of 29 stormwater treatment projects were identified that ranked highest by a combined score for cost, benefit, and feasibility. Eight of those projects are located on North Shore Road and include six media filter drains, one biofiltration swale, and one Stormfilter® device with Phosphosorb® media (Table 2).

The cost per pound of TP removed by these projects ranges from \$9,000 to \$292,000, and the average project cost of all eight projects is \$26,000/pound. These costs include design and construction, but not long-term maintenance of the stormwater treatment facilities. To account for long-term maintenance, 10 percent was added to the median stormwater treatment cost, resulting in a total cost of \$29,000/pound of TP removal by stormwater treatment.

Table	1. Flov	w-weight	ed Total	Phosph	orus Cor	ncentrations in	Onsite Se	ptic System
C	ontam	inated a	nd Uncor	Itaminat	ed Disch	narges in North	Shore Su	bbasin.
		B. dorei	B. EPA					OSS Corrected
Discharge	Event	(copies/1	(copies/1	Total P	Flow	Flow-Weighted	Mean Flow	Flow-Weighted
Station	No.	00 mL)	00 mL)	(mg/L)	(cfs)	Mean TP (ug/L)	(cfs)	Mean TP (ug/L) ^a
Uncontami	nated D	ischarges						
525	2	0	0	0.036	0.35	-	-	-
525	3	0	0	0.046	0.35	-	-	-
525	Mean					41	0.35	41
521	3	0	0	0.014	0.08	14	0.08	14
518	2	0	0	0.048	0.42	48	0.42	48
492	2	0	0	0.024	0.75	24	0.75	24
466	2	0	0	0.050	2.5	50	2.50	50
449	3	0	0	0.098	10	98	10.00	98
437	2	0	0	0.032	0.45	-	-	-
437	3	0	0	0.060	1.5	-	-	-
437	Mean					54	0.98	54
Uncontam	ninated N	/ledian				48	-	48
Contamina	ted Disc	harges				-	· · · · · ·	
520	2	17,400	1,450	0.052	0.15	-	_	-
520	3	21,700	1,610	0.064	0.38	-	_	-
520	Mean		_,			61	0.26	48
518	3	112	0	0.066	0.38	66	0.38	48
466	3	87	0	0.088	3.3	88	3.30	48
453	2	3	4,050	0.014	0.60	-	-	-
453	3	3	9,960	0.054	0.80	-	_	-
453	Mean		5,500	0.051	0.00	37	0.70	37
440	3	107	0	0.062	3.00	62	3.00	48
430	3	278	0	0.088	0.50	88	0.50	48
Contamin			Ū	0.000	0.50	64	-	48
						01		10
All Dischar	-							
Flow-weight						77	-	69
Percent Red	uction fr	om Existing	g to OSS Co	rrected TP	Concentra	tion		10%
Possibly Co	ontamina	ated Discha	arges Not l	Jsed				
509	3	3	0	0.086	0.25	-	-	-
462	2	3	0	0.056	0.73	-	-	-
430	2	3	0	0.016	0.50	-	-	-
Outlier Dise								
462	3	ot Used	0	0.218	2.2		-	
402	5	U	U	0.210	۷.۷	-	-	-

^a Corrected for OSS contamination by reduced the existing TP concentration for a contaminated discharge to 48 μ g/L, which represents the median TP concentration of all uncontaminated discharges if the measured TP concentration of a contaminated discharge is greater than 48 μ g/L.

	Table 2. Prop	osed Stormwater Pr	ojects for No	rth Shore Roa	d.
Project Rank	Project Name	Proposed Solution	Estimated Project Cost	Total Phosphorus Removed (pounds/year)	Cost per Pound of Phosphorus Removed (\$/pound/year)
1	East side of Northshore at Edgewater Lane	1,000-linear-foot Media Filter Drain	\$320,000	12.23	\$26,000
2	North Lake Whatcom Park	Bioretention	\$450,000	5.91	\$76,000
4	Northshore East of Olsen Creek	275-linear-foot Media Filter Drain	\$83,000	5.27	\$16,000
5	Northshore West of Olsen Creek	350-linear-foot Media Filter Drain	\$105,000	5.08	\$21,000
10	Northshore Road at Eagleridge	650-linear-foot Media Filter Drain	\$195,000	2.48	\$79,000
11	Eagleridge Pond at Northshore	Stormfilter with Phosphosorb	\$277,000	31.87	\$9,000
28	3303 Northshore Road	550-linear-foot Media Filter Drain	\$165,000	1.22	\$136,000
29	Northshore Drive at Eagleridge	200-linear-foot Media Filter Drain	\$60,000	0.21	\$292,000
Total	All Projects	All Solutions	\$1,655,000	64.27	26,000

Source: Herrera 2017b.

Wilson Engineering recently estimated the cost of extending the sewer to connect 100 OSS in the North Shore subbasin. The total design and construction cost ranges from \$3 to \$6 million depending on the sewer extension approach (Melanie Mankamyer, personal communication: e-mail to Rob Zisette, January 17, 2018). Applying this range of cost to 50 pounds/year of TP removal equates a range of \$60,000 to \$120,000/pound of TP removal by sewer extension. Thus, the cost for TP removal by sewer extension is estimated to be at least twice the cost of stormwater treatment.

The phosphorus TMDL implementation plan is to reduce phosphorus loading from 400 to 193 pounds/year (87 percent rollback scenario) for the North Shore subbasin (Ecology 2016). Thus, the eight highest-ranked stormwater treatment projects for the North Shore subbasin would only remove 64 of the required 207 pounds/year, and achieve only 30 percent of the goal. Additional removal by stormwater treatment would likely cost more than \$29,000/pound of TP removed, and the phosphorus reduction goal may not be achievable without the sewer extension. The sewer extension evaluation should evaluate all feasible alternatives for meeting the TMDL goal for the North Shore subbasin, and should also account for the additional benefits of removing OSS phosphorus and other wastewater contaminants that currently seep directly into the lake.

REFERENCES

Carlson, A. 2011. Benefit and Cost of Phosphorus-Reducing Activities in the Lake Whatcom Watershed. Technical memorandum prepared for the City of Bellingham by Amy Carlson, PE, CH2M Hill, Bellevue, Washington. December 15.

Ecology. 2016. Lake Whatcom Watershed Total Phosphorus and Bacteria Total Maximum Daily Loads, Volume 2. Water Quality Improvement Report and Implementation Strategy. Publication No. 13-10-012. Washington Department of Ecology, Olympia, Washington. Revised February.

Herrera. 2017a. Water Quality Monitoring Report, Lake Whatcom North Shore On-Site Sewage System Leachate Detection Project. Prepared for Lake Whatcom Water and Sewer District by Herrera Environmental Consultants, Inc., Seattle, Washington. July 10.

Herrera. 2017b. Lake Whatcom Comprehensive Plan: Stormwater Capital Program Update, Whatcom County, Washington. Prepared for Whatcom County Public Works by Herrera Environmental Consultants, Inc., Seattle, Washington. September 25.

Lusk, M.G., G. Toor, Y. Yang, S. Mechtensimer, M. De, and T. Obreza. (2017). A Review of the Fate and Transport of Nitrogen, Phosphorus, Pathogens, and Trace Organic Chemicals in Septic Systems. Critical Reviews in Environmental Science and Technology. 47. 455-541.

ATTACHMENT A

Comment Responses

Comment Source	Comment	R
County - General Comments on Report	control site. It appears that the goal of this project is to determine if a public sewer system would be a better option than individual septic systems for sewage treatment at lakeshore residences in the Lake Whatcom watershed.	The project goal was to determine if septic system of a sewered area may provide useful information by sewering the study area, but characteristics of represent those planned for the study area. We w monitoring.
County - General Comments on Report	discharge site). The QAPP indicates criteria will be established following survey of the control site and the	The QAPP specified that OB would be used to sele at the lake control sites. The exact OB threshold o this method had not been previously used. The sa was used for the following two monitoring events
County - General Comments on Report	particular, it is unclear why the lake project area station with the highest fecal coliform bacteria level in Event 1 was not sampled during the following sampling events. It appears that all five lake project area stations were	We agree that all lake and discharge stations shou the entire study area. The project goal and sampli project budget did not allow an unlimited the nun future monitoring now that the large number of c
County - General Comments on Report	Study Design Recommendation: Suggest establishing sampling stations during first sample run and then consistently sampling these stations throughout the duration of the project. Additional stations may be established during later sampling runs based upon higher optical brightener levels.	We agree as noted above.
County - General Comments on Report	Results Question: Are there similar studies of optical brighteners that could provide ranges of levels typically found in lakes, creeks, and other discharges?	Yes there are, but most of them that we are awar We are not aware of any studies in this region and valid due to differences in background OB concen
County - General Comments on Report	indicators to evaluate public health risk. A wastewater treatment plant's effluent can have optical brighteners	OB data were not and should not be used to evalu with fecal coliform data, which is useful and comp for fecal coliform or pathogen concentrations.
County - General Comments on Report	Results Recommendation: Suggest measuring optical brightener levels at a minimum at each discharge site with each sampling run.	We measured OB at every discharge site that we
County - General Comments on Report		Yes there are comprehensive interlaboratory com biomarker results. The Cao et al 2013 study cited this study.
County - General Comments on Report	Results Question: Are these human biomarkers the same biomarkers used by the EPA in the Tillamook and Nooksack studies?	We do not know and could investigate that if you that the EPA human marker quantified by Source marker used by EPA in the other studies, but it ma
County - General Comments on Report	section. Under Section 3.4 Bacteria Indicators, it is stated that "none of the observed lake or discharge results exhibited high enough fecal coliform bacteria concentrations to strongly indicate contamination from septic system effluent". In Section 3.5 Bacteriodetes, the report indicates "moderate to high concentrations of human biomarkers are considered proof that the samples were contaminated by septic system effluent". This	We agree that additional research on fecal colifor conducted to validated this possible explanation of where low fecal coliform concentrations are obse coliforms are measured, while Bacteroidetes DNA longer than living fecal coliforms. We will recomm monitoring.
County - General Comments on Report	Discussion and Conclusions Comment: The final conclusion of the report is "connecting homes in the study area to a sanitary sewer would prevent the ongoing contamination of Lake Whatcom from septic systems in the area". One site (520) had a consistent (two sample) pattern of the presence of both human DNA biomarkers and one site (453) had the presence of one of the human biomarkers in both samples. The other discharge sites did not show consistent patterns or moderate to high biomarker levels. One control lake site had the presence of low level of human biomarkers in one sample.	We do not see a conflict with the patterns observ

Response

ems are contaminating the lake. Monitoring the shoreline on for estimating potential reductions in contamination of the sewered areas likely vary widely and may not will recommend including a sewered area for future

elect sampling sites based on background levels observed I over background was not specified in the QAPP because same threshold determined for the first monitoring event hts.

ould be monitoring during all events to better evaluate pling design was to sample worst case conditions, and the umber of samples. We will recommend more samples for f contaminated lake and discharge sites are known.

are of used a different meter with higher detection limits. and comparison to results for other regions may not be entrations.

aluate public health risk. In this study, OB data correlated npelling, but not strong enough to use OB as a surrogate

e could find during each sampling run.

omparison studies that recommend how to rank and in the report formed the basis for the rankings made in

bu provide us with reports of the other studies. It is likely be Molecular for in this study is very similar to the human may have been improved upon if those studies are old.

orm and Bacteroidetes fate and transport should be n of why high Bacteroidetes concentrations are observed served. A possible explanation is that only living fecal NA analyses includes dead bacteria that may persist nmend addtional research on this topic for future

rved and the conclusion drawn.

Comment Source	Comment	Re
Memo Page 1, Pgh 3 (Douglas)	Without the work completed to evaluate septic systems in this area, it isn't clear if the referenced bacteriodes and TP results may be affected by effluent transported through soils, a failing system with a surface discharge, or other source. It was agreed at the meeting this fall that it would be helpful to analyze water samples again after systems were evaluated.	We agree that it would be helpful to conduct addi evaluation reduces contamination from septic sys identify the specific means of septic system efflue
Memo Page 2, Pgh 3 (Stoyka)	This does not make sense. The point of the study is to make a case that connection to sewer will result in water quality improvements, but this is saying that sewer connection will not lead to any water quality improvements b/c of cross connections, etc.	The project goal was to determine if septic system would prevent contamination. Monitoring the sho information for estimating potential reductions in characteristics of sewered areas likely vary widely area. We will recommend including a sewered are
Memo Page 2, Pgh 4 (Stoyka)	Recreationalists can be a significant source of fecal in some areas and the land above these homes is a County park with trails.	We agree that may be the case in the summer, bu case in January when the ground was covered in s will recommend monitoring of recreationalist input
Memo Page 3, Pgh 1 (Stoyka)	this is still within the depth range that would provide full treatment.	Possibly, but P removal likely depends more on th drainfield, the amount/rate of rain, and the depth
Memo Page 4, Pgh 3 (Stoyka)	I can't figure out where these numbers are coming from.	We will include all raw data and calculations in the
Memo Page 4, Pgh 4 (Stoyka)	Why would you reduce the contaminated discharge to the uncontaminated concentration.	We will clarify that the P concentrations in contam background concentrations to determined the diff for estimating the potential reduction in P loading
Memo Page 4, Pgh 5 (Stoyka)	Where does this 50 lbs/yr come from?	10 lbs/yr was added to the estimate of 40 lbs/year from OSS to the lake that was not included in disc
Memo Page 5, Table 1 (Stoyka)	These numbers do not appear to be correct and do not reflect the averages from the above columns.	We will review the calculations and include all dat
Memo Page 6, Table 2 (Douglas)	These stormwater projects together would remove an estimated 64 pounds of phosphorus per year for a cost of \$1,655,000. This is an average cost of about \$26,000 per pound of TP removal by stormwater projects. Both sewer and stormwater facilities require ongoing maintenance and the associated costs.	This is a reasonable way to estimate stormwater of average cost based on implementationof all plann
Hood - Memo Data Review Comments	1 – In reviewing data, there are no field book notes or other indication to line up Sample ID to Station. It is not possible to verify that the correct analyses are line up with the station. For a random example, sample 9D represents station 453 on one date and station 462 on another date.	As described in the QAPP and report, each sample collected rather being uniquely associated with th sample locations were not known at the time of sa upon completion of sampling by GIS mapping of th determine the lake or discharge station ID for each
Hood - Memo Data Review Comments	2 – The COC lists sample ID 10D and 5D but there is no data phosphorus, or chloride for 3/15/2017 sampling event and no explanation for the lack of analysis.	We reviewed the data again for any data entry err and report, some of the samples exhibiting low fer chemical and molecular parameters because there event for analysis of all laboratory parameters. Sa samples analyzed for fecal bacteria and not other

Response

Iditional monitoring to determine if septic system ystems. Study methods would need to be modified to uent transport to the lake.

ems are contaminating the lake, not to prove that sewers horeline of a sewered area may provide useful in contamination by sewering the study area, but

ely and may not represent those planned for the study area for future monitoring.

but discussions with residents indicated that is not the n snow and in March when it rained almost every day. We nputs for future monitoring.

the type of soil, amont of sewage loading, age of the of the water table.

the revised memo.

aminated discharges were reduced to uncontaminated difference between contaminated and uncontaminated ng if OSS contamination is removed.

ear for only discharges to account for direct seepage of P scharge loading estimate.

lata in the revised memo.

r costs and we will revise the cost analysis to evaluate nned projects.

ble ID was identified sequentially as samples were the same station ID because the prior lake and discharge f sampling. The station ID was assigned to each sample ID f the logged GPS location recorded in field notes to ach sample ID.

errors and none were identified. As described in the QAPP fecal bacteria concentrations were not analyzed for the ere was a project budget limit of up to 15 samples per Samples 10D and 5D collected on 3/15/17 are two of the er parameters due to the budget limitation.

Comment Source	Comment	R
Hood - Memo Data Review Comments	 when needed but never throw them out.' (See https://practicalstats.teachable.com/p/applied-environmental-statistics-1) we should investigate outliers and provide a rationale for any correction. Station 462 sampled on 3/29/2017was eliminated from non-contaminated group because it was an outlier (not 238 but 218 a minor error). The Lab QC was OK. One possible explanation is that the discharge may contain runoff from a wetland during times the water table is very high. The SCS soil map shows a couple of "wet spots" in the shoreline between Smith and Olsen Creeks. Wetlands often have high levels of phosphorus. In addition, wetlands often discharge intermittently. Note that March 2017 was wet, with nearly twice-normal rainfall spread throughout the month. January was mild January and February was normal. The single largest value may be a valid background value demonstrating what happens when wetlands discharge. 	We removed the outlier TP value from the flow-w discharges because it a statistical outlier (greater represent an uncontaminated discharge. Wetland source at that location, but it seems that this natu sample collected 2 weeks previously from Station There are other possible causes of the TP outlier, fertilizer, or soil slumping and erosion caused by t The bacteroidetes data were only used in the load contaminated. They were not used to calculate flo dorei value at station 520 as an outlier would not of the high concentration of B. EPA at that same s
Hood - Memo Data Review Comments	cannot verify volume weighted averages for all events. However, when going through the data to verify that	We calculated discharge data from field notes and written because it was needed when we were ask discharge data in the revised memo.
Hood - Memo Data Review Comments		Detected below the DL and not detected are distint than 3 means that it was positively detected below considered to be a low concentration. Not detected sample.
Hood - Memo Data Review Comments	6 – Lack of a sewered control area fails to test effectiveness of providing sewers. The extrapolation that contaminated events would mimic uncontaminated events is unsupported because no sites that have sewer were tested.	The project goal was to determine if septic system would prevent contamination. Monitoring the sho information for estimating potential reductions in characteristics of the sewered areas likely vary with study area may not be relevant. However, it is clear include monitoring of a sewered area for evaluating recommend including a sewered area for future m
Hood - Memo Data Review Comments	significant in defining the groups. 75% of the contaminated group is samples from the second date but only 44% of the uncontaminated group is from samples on the second date. The paper examine the significance of date of sample. A one sided Mann-Whitney test for all discharge sites based on date indicates that that date of sample is significant at alpha = 1% (p = 0.00224, with station 462 and p=0.00319 without station 462) chance that the location shift is equal to zero. This test is significant even at alpha = 1% so the significance of the groups may be more influenced by date. Also note that the date. Below is a box plot of TP for the two days from Discharge Stations. Two stations in the "Uncontaminated" group have sample results for both dates. The TP results on first sample	loading is difficult to estimate accurately because Accurate P loadings would require many more sar flow meters over at least a 1-year period, and a m periods of flow. Research has shown that even wi

Response

-weighted average TP concentration for uncontaminated er than 2 times all other values) and clearly does not and discharge of low oxygen waters is a possible high P atural source would also have been observed in the on 462 or at another locations within the study area. r, which include a direct application of a phosphorus y the extended wet period and high flow conditions. adding analysis to identify if a discharge was OSS flow-weighted P loadings and removal of the high B. ot have changed its designation as contaminated because e station.

nd entered it into the database after the report was sked to conduct the P loading analysis. We will include all

stinctions commonly used for trace organics data. Less low the estimated quantitation limit of 3, and that was cted values are considered to not be present in the

ems are contaminating the lake, not to prove that sewers horeline of a sewered area may provide useful in contamination by sewering the study area, but widely and extrapolation of sewered area results to the clear from all reviewers that future monitoring should ating potential effects of a sewer extension. We will e monitoring.

ent and that is not unique to this study. Collecting grab luring different types of storms inherently results in data ifferences between sampling events does not negate irings.

not designed to estimate P loadings from septic systems. P se of the high variance of P concentrations in drainage. samples collected with automatic samplers, continuous model to predict P concentrations during unsampled with a high level of effort, the uncertanty in P loading adings from septic systems would require additional bw groundwater well testing.

Comment Source	Comment	Re
Hood -Memo Method Comments	8– While the text correctly makes the case that weighted averages should be used it appears that arithmetic averages may have been used. As noted in 4 above I could not recalculate flow weighted TP concentrations for all events. However, weighted averages for the contaminated group are smaller than the reported flow weighted concentration and the weighted average for the uncontaminated group are higher than the reported concentration. The calculations below use the data from table 1. It is unclear when there are two events, if the reported flow is the average or the sum. In the calculations below "Flow.wt" is the concentration times the reported flow. In the column "TFlow?.wt", the weights are the doubled flow. Using the either of the weighted average uncontaminated flow as a target achievable for the contaminated events would only mean a reduction in 25% of the events. If we use the TotalFlow weights and make a similar calculation the contaminated group would drop from 58.4 μg/L to 56.1 μg/L a mere 4% reduction.	
Hood -Memo Method Comments	9 – Assuming the bottom of table 1 is correct, some area (undefined in the report) contributes 77 μ g/L	The 10 percent reduction to the entire watershed values for all discharges measured in the watershe
Hood -Memo Method Comments	should ask if we have a representative sample.	The samples are representative of high flow condi during lower flows, or if the flow- weighting of spe lower flows. There is indication from the one disch P loading study (site NS1 referenced in a comment during the smaller storms sampled for that study. representative storms to the final memo. Howeve base flow than storm flow in drainages where the dilutes the drainage P concentrations, which may study area.
Hood -Memo Method Comments	11 – There does not seem to be any discussion on how much of the developed area may be increasing TP in discharges.	Samples were not collected upstream of the deve affected P loading from non-OSS sources. We reco sources other than OSS and those sources were as with the exception of the one outlier removed.
Hood -Memo Method Comments	12 – The multiplier for ground water discharge to the lake does not address that	The multiplier for groundwater discharge is intend appropriate to increase the multiplier for non-OSS
	12- In dismissing the ability of the OSS maintenance program to address failures that discharge to ground, there is an error in the last paragraph of page 1. I know of at least one case where an OSS inspection identified a failure that was not surfacing. In this case, the septic tank was leaking and septage was going to ground without reaching the drain field. The observation of draw down can capture system problems between the septic tank and the drain field that do not result in surface discharges.	We will revise the statement to clarify that the OS
Hood - Memo Proposed Solution Comments	13- There seems to be a balance between sites identified as contaminated and not contaminated. This would	We agree that there are several alternatives to co sewer.

Response

view those calculations for the final memo.

ed is reasonable because 77 and 69 are flow-weighted shed under two different scenarios.

nditions. We don't know if P concentrations are lower specific discharges would substantially change during scharge sampled in the North Shore basin for the Phase 2 ent below) that it does have lower P concentrations ly. We will add that data comparison and a discussion of ever, we have often seen higher P concentrations during the groundwater P concentrations are high and runoff ay be the case for septic contaminated drainages in the

veloped area to determine how development may have ecognize that development increases P loading from assumed equavalent in all discharges for this analysis,

ended to only represent OSS P loading and it would not be DSS loading from development.

OSS maintenance program occasionally corrects failures

consider besides maintaining septics and extending the

Comment Source	Comment	Res
Hood - Memo Proposed	14 – To the extent that the results from contaminated groundwater, a greater understanding of groundwater	We agree that a greater understanding of groundw
Solution Comments	will be required to estimate the benefits. If there is a deep contamination of the groundwater, the	would be valuable for assessing OSS impacts on the
	contaminated groundwater may continue to flow into the lake for many years.	

Response

dwater contamination and P movement towards the lake the lake.

ATTACHMENT B

Updated Database

Station	Station Type	Sample ID	Event	Date	Time	Lat (°)	Long (°)	Temp (°C)	DO (mg/L)	pН	Sp Cond (uS/cm)	Turbidity (FNU)	OB (RFUB)
OSS	Septage	OSS	2	3/15/2017	15:50	48.73255	-122.31705	7.8	0.30	6.96	963	26.8	63
OSS	Septage	OSS	3	3/29/2017	15:41	48.73254	-122.31709	9.1	0.50	6.91	943.8	32.3	68
C1	Lake	C1	1	1/19/2017	9:26	48.72298		6.7	10.42	7.20	50.7	0.3	00
C1	Lake	C1	2	3/15/2017	9:41	48.72372	-122.30253	6.3	11.55	7.46	57.3	0.3	4
C1	Lake	C1	3	3/29/2017	10:01	48.72375		6.6	11.77	7.41	56.7	0.6	2
C2	Lake	C1	1	1/19/2017	9:32	48.72408	-122.30284	6.7	10.60	7.21	57.7	0.0	
C3	Lake	C3	1	1/19/2017	9:40	48.72568		6.7	10.60	7.21	58.1	0.2	
C3	Lake	C2	2	3/15/2017	9:50	48.72564	-122.30418	6.3	11.43	7.39	57.6	0.2	
C3	Lake	C2	3	3/29/2017	10:12	48.72568	-122.30408	6.7	11.43	7.31	57.0	0.4	-
1L	Lake	1L	3	42823	0.4556	48.73429	-122.31767	6.9	11.31	6.92	56.6	0.6	
2L	Lake	4L	2	42809	0.4826	48.73649	-122.32124	7.2	11.14	7.08	64.8	3.0	
3L	Lake	3L	1	42754	0.4889	48.7369		6.8	11.59	7.39	60.9	2.7	
4L	Lake	11L	2	42809	0.5806	48.74635		7.2	11.67	7.16	59.7	0.4	
5L	Lake	12L	2	3/15/2017	14:09	48.74685	-122.33852	7.7	11.16	7.08	61.4	1.7	2
525A	Discharge	1D	1	1/19/2017	11:00	48.73471	-122.31801	6.1	10.59	6.55	70.4	5.8	19
525	Discharge	1D	2	3/15/2017	10:50	48.73466		7.4	10.74	6.62	64.4	3.8	1
525	Discharge	2D	3	3/29/2017	11:08	48.73478		7.9	10.62	6.56	64.9	5.1	1
521	Discharge	2D	1	1/19/2017	11:32	48.73633	-122.32094	6.2	11.91	7.24	67.4	10.8	24
521	Discharge	1-2D	2	3/15/2017	11:02	48.73558	-122.31968	6.9	11.35	7.19	61.4	0.9	
521	Discharge	3D	3	3/29/2017	11:21	48.73546		7.6	10.83	6.80	66.2	1.6	
520	Discharge	2D	2	3/15/2017	11:05	48.73556		8.7	11.09	7.05	81.9	4.4	1
520	Discharge	4D	3	3/29/2017	11:36	48.73561	-122.31953	8.9	10.92	6.87	75.3	8.3	1
518	Discharge	3D	2	3/15/2017	11:20	48.73634	-122.32094	8.2	11.64	7.24	71.8	8.5	1
518	Discharge	5D	3	3/29/2017	11:50	48.73637	-122.32088	8.2	11.51	7.25	66.7	15.3	2
509	Discharge	4D	1	1/19/2017	11:58	48.73824	-122.32341	6.6	11.84	7.21	65.1	15.8	2
509	Discharge	5D	2	3/15/2017	12:15	48.73822	-122.32336	7.8	11.75	7.38	61.8	7.6	1
509	Discharge	6D	3	3/29/2017	12:10	48.73803	-122.32349	8.1	11.59	7.27	59.1	22.2	1
495	Discharge	5D	1	1/19/2017	12:17	48.74035	-122.3254	6.5	11.07	7.00	115.6	3.6	2
495	Discharge	1-5D	2	3/15/2017	12:07	48.74028		7.4	11.28	7.12	102.0		2
492	Discharge	6D	1	1/19/2017	12:27	48.74084		6.5	11.92	7.18	41.3	14.1	1
492	Discharge	6D	2	3/15/2017	12:26	48.74082		7.6	11.89	7.22	40.3	2.3	1
492	Discharge	7D	3	3/29/2017	12:33	48.74081		7.8	11.74	7.20	38.9	13.8	1
488	Discharge	7D	1	1/19/2017	12:34	48.74094		6.4	11.92	7.09	52.5	18.6	2
488	Discharge	1-7D	2	3/15/2017	12:35	48.74089		7.5	11.88	7.21	49.1	8.1	1
488	Discharge	1-7D	3	3/29/2017	12:41	48.74098	-122.32636	7.4	11.87	7.25	48.6	15.4	1
481	Discharge	8D	1	1/19/2017	12:45	48.74184	-122.32775	6.0	11.88	6.90	67.2	10.9	1
481	Discharge	1-8D	2	3/15/2017	12:43	48.74184	-122.32772	7.3	11.72	7.02	65.8	3.7	1
481	Discharge	1-8D	3	3/29/2017	12:45	48.74184	-122.32774	7.4	11.85	7.11	57.7	17.0	1
466	Discharge	9D	1	1/19/2017	13:07	48.74336		5.4	11.91	6.84	58.1	6.8	
466	Discharge	7D	2	3/15/2017	12:51	48.74335	-122.33005	6.8	11.47	6.96	58.6	14.4	1
466	Discharge	8D	3	3/29/2017	12:55	48.74333	-122.33004	7.7	11.39	6.94	50.7	17.8	1
462	Discharge	10D	1	1/19/2017	13:16	48.74376	-122.33084	5.4	12.21	7.13	57.7	29.7	
462	Discharge	8D	2	3/15/2017	13:03	48.74375	-122.33079	7.2	11.94	7.33	59.2	10.2	2
462	Discharge	9D	3	3/29/2017	13:05	48.74385	-122.33078	7.6	11.77	7.26	49.4	39.4	2
453	Discharge	9D	2	3/15/2017	13:18	48.74528	-122.33444	6.9	10.48	6.60	59.3	1.4	1
453	Discharge	10D	3	3/29/2017	13:25	48.7453	-122.33442	7.6	10.75	6.43	51.4	6.5	1
449	Discharge	11D	1	1/19/2017	13:29	48.74545	-122.33574	6.6	11.97	7.17	58.8	34.7	
449	Discharge	10D	2	3/15/2017	13:35	48.74546	-122.33574	7.9	11.87	7.37	59.2	6.6	1
449	Discharge	11D	3	3/29/2017	13:39	48.74547	-122.33577	7.6	11.89	7.20	48.6	67.2	1
440	Discharge	12D	1	1/19/2017	13:39	48.7469	-122.3386	5.3	11.88	6.85	53.5	3.6	
440	Discharge	12D	3	3/29/2017	13:57	48.7469	-122.33854	8.4	11.14	7.04	49.1	5.1	2
437	Discharge	13D	1	1/19/2017	13:44	48.74736		5.2	12.17	7.05	41.4	6.4	
437	Discharge	13D	2	3/15/2017	14:20	48.74743		7.6	11.82	7.29	45.6		2
437	Discharge	13D	3	3/29/2017	14:12	48.74738		8.0	11.64	7.18	37.7	7.7	2
430	Discharge	14D	1				-122.34364						

Lake Whatcom North Shore On-Site Sewage System Leachate Detection Project Database

430	Discharge	14D	1	1/19/2017	13:53	48.74865	-122.34364	5.5	11.85	6.94	61.3	9.1	
430	Discharge	14D	2	3/15/2017	14:40	48.74866	-122.34368	7.2	11.99	7.33	60.3	1.3	106
430	Discharge	14D	3	3/29/2017	14:28	48.74871	-122.34364	8.4	11.47	7.00	57.0	11.4	229
429	Discharge	15D	3	3/29/2017	14:47	48.74885	-122.34624	8.9	11.47	6.27	0.2	25.6	297

ND = not detected, < = detected at less that practical quantitation limit

U = undetected at reporting limit, J = estimated value based on data quality review

							-	-			-		I	Dramaida
Station	Fecal colif (CFU/100		E coli (CFU/100		EC/FC Ratio	B dore		B EPA		Lab Category	Total (mg/l		Chloride (mg/L)	Bromide (mg/L)
OSS	1500000		1500000		1.0	1030		55000		Moderate	10.3		(ilig/L) 46.8	0.10 U
OSS	4080000		4080000		1.00	1030		141000			10.3		46.8	0.10 U
C1		> U		> U		1400		141000		High	10.2		48.1	0.10 0
C1 C1		U		U U	1.0 1.0	2	<	0	ND	Low	0.008		2.69	0.10 U
		U		U U	1.00		< ND		ND	Low Not detected	0.008		2.68 2.59	0.10 U
C1 C2					1.00	0	ND	0	ND	Not detected	0.008	0	2.59	0.10 0
		U		U										
C3 C3	4	J	4	1 L	1.0 1.0	0	ND	0	ND	Not detected	0.008		2.68	0.10 U
C3				U	1.00	0	ND	0	ND	Not detected	0.008	0	2.00	0.10 0
1L	9		9		1.00	0	ND	0	ND	Not detected	0.012		2.56	0.10 U
2L		J		ר ט	1		ND		ND	Not detected	0.012		2.50	0.10 U
3L	46		42	_	0.913	0	ND	0	ND	Not detected	0.018		2.59	0.10 0
4L	40		42 5		0.913	2	<	0	ND	Low	0.024	1	2.63	0.10 U
5L	9		9		1.0	60			ND	Low	0.024	J	3.05	0.10 U
525A	150		145		1.0	00		0	ND	LOW	0.050		5.05	0.10 0
525A	130		145		1.0	0	ND	0	ND	Not detected	0.036		2.63	0.10 U
525	114		114		1.00		ND		ND	Not detected	0.036		2.83	0.10 U
525	112		112		0.8	0		0			0.040		2.50	0.10 0
521	122		105		0.8									+
521	16	1	16	1	1.00	0	ND	0	ND	Not detected	0.014		2.66	0.10 U
521	100		7		0.1	17400	ND	1450		Moderate	0.014		3.47	0.10 U
520	62		62		1.00	21700		1430		Moderate	0.052		3.10	0.10 U
518	44		13		0.3		ND		ND	Not detected	0.004		2.16	0.10 U
518	29		29		1.00	112	ND		ND	Low	0.048		1.77	0.10 U
509	55		29		0.5	112		0	ND	LOW	0.000		1.//	0.10 0
509	4		4		1.0									
509	342		342		1.00	3	<	0	ND	Low	0.086		1.42	0.10 U
495		J		J	1.00	5	`	0	ND		0.080		1.42	0.10 0
495	5	0	5	0	1.0									
492	68	1	55	1	0.8									
492	7		7		1.0	0	ND	0	ND	Not detected	0.024		1.15	0.10 U
492	2	-	2		1.00				ND	Not detected	0.024		1.13	0.10 0
488		J U		J U	1.00									
488	5	0	5	0	1.0									
488														
481	5	J	5	J	1.0									
481		-		-										
481														
466	73	J	68	J	0.9									
466	198		191		1.0	0	ND	0	ND	Not detected	0.050		2.41	0.10 U
466	127		122		0.96	87			ND	Low	0.088		1.87	0.10 U
462	82		64		0.8									
462	4		4		1.0	3	<	0	ND	Low	0.056		2.08	0.10 U
462	15	J	11	J	0.73	0	ND	0	ND	Not detected	0.218		1.46	0.10 U
453	38	J	38	J	1.0	3	<	4050		Low	0.014		2.82	0.10 U
453	124	J	110		0.89	3	<	9960		Low	0.054		2.17	0.10 U
449	190	J	180		0.9									
449	2	J	2	J	1.0									
449	20	J	18	J	0.90	0	ND	0	ND	Not detected	0.098		1.71	0.10 U
440	50	J	32	J	0.6									
440	44		44		1.00	107		0	ND	Low	0.062		1.80	0.10 U
437	18	J	14	J	0.8									
437	9	J	9	J	1.0	0	ND	0	ND	Not detected	0.032		1.96	0.10 U
437	20	J	20	J	1.00	0	ND	0	ND	Not detected	0.060		1.38	0.10 U
430	125		100		0.8									

Lake Whatcom North Shore On-Site Sewage System Leachate Detection Project Database

430	125		100		0.8										
430	7	J	7	J	1.0	3	<	0	ND	Low	0.016	2.70		0.10	U
430	800		82		0.10	278		0	ND	Low	0.088	1.78	J	0.10	U
429	262	J	260	J	0.99							`			

	-			-		Flow Data
	(ft)	(ft)	Area (ft2)	(fps)	Flow (cfs)	Source
All parameters						
All parameters						
Field a0 Fecals						
All parameters						
All parameters						
Field a0 Fecals						
Field a0 Fecals						
All parameters						
Field a0 Fecals						
All parameters						
All parameters						
Field a0 Fecals						
All parameters						
	0.15	1.50	0.23	2.0	0.45	photo
						notes
						notes
						notes
	0.23					notes
	0.50					notes
		1 00				notes
						notes
		1.00				notes/photo
	0.25			1.5		notes/photo
	0.12			2.0		other event
						notes/photo
	0.17		36" pipe	1.5		notes/photo
						other event
· · ·						photo
						photo
						notes/photo
	0.25	1.50	0.38	2.0		notes/photo
Field a0 Fecals					0.75 J	other event
Field only	0.17	2.00	0.33	1.5	0.50	notes/photo
Field only	0.25	2.00	0.50	1.5	0.75	notes
Field a0 Fecals	0.21		36" pipe	3.0	0.65	photo
Field only	0.17		36" pipe	2.0	0.35	photo
Field only			36" pipe		0.35 J	other event
Field a0 Fecals			36" pipe		3.0 J	other event
All parameters	1.67		36" pipe	0.5	2.5	notes/photo
All parameters	2.67		36" pipe	0.5	3.3	notes/photo
Field a0 Fecals					2.0 J	other event
All parameters	0.17	2.20	0.37	2.0	0.7	notes/photo
All parameters	0.50	2.20	1.10	2.0	2.2	notes/photo
						notes/photo
						notes
	,			0.0		photo
	0.50	2 20	1 10	6.0		notes/photo
						notes
	0.07	5.00	2.00	5.0		other event
	1 50	0 00	12.00	0.25		
						notes/photo
						photo
I All Darameters	0.10	1.50	0.15	3.0	0.45	notes/photo
All parameters	0.10	5.00		3.0	1.5	notes/photo
	Field a0 FecalsAll parametersAll parametersField a0 FecalsField a0 FecalsAll parametersField a0 FecalsField a0 FecalsField a0 FecalsField a0 FecalsField a0 FecalsAll parametersAll parametersAll parametersAll parametersField a0 FecalsField a0 Fecals <t< td=""><td>Code(ft)All parameters</td><td>Code(ft)(ft)All parameters.All parameters.Field a0 Fecals.All parameters.Field a0 Fecals.Field a0 Fecals.All parameters.Field a0 Fecals.All parameters.Field a0 Fecals.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters0.15All parameters0.33All parameters0.33Field a0 Fecals0.25Field a0 Fecals0.25All parameters0.29All parameters0.25Field only.All parameters0.25All parameters0.25Field a0 Fecals0.17Field a0 Fecals0.13All parameters0.25Field a0 Fecals0.17Field a0 Fecals0.25Field a0 Fecals0.25Field a0 Fecals0.25Field a0 Fecals0.21Field a0 Fecals0.21<td>Code(ft)(ft)Area (ft2)All parametersAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersAll parameters0.33.24" pipeField a0 Fecals0.151.50All parameters0.25.36" pipeAll parameters0.25.00All parameters0.25.00All parameters0.251.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00Field a0 FecalsField a0 FecalsField a0 Fecals<</td><td>Code(ft)(ft)Area (ft2)(fps)All parametersIIIAll parametersIIIAll parametersIIIAll parametersIIIField a0 FecalsIIIField a0 FecalsIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 Fecals0.151.500.23All parameters0.3324" pipe1.0Field a0 Fecals0.2536" pipe0.1All parameters0.2536" pipe0.1Field a0 Fecals0.251.000.25All parameters0.251.000.25All parameters0.251.000.25All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38<t< td=""><td>Code (ft) Area (ft2) (fps) Flow (cfs) All parameters All parameters Field a0 Fecals All parameters .</td></t<></td></td></t<>	Code(ft)All parameters	Code(ft)(ft)All parameters.All parameters.Field a0 Fecals.All parameters.Field a0 Fecals.Field a0 Fecals.All parameters.Field a0 Fecals.All parameters.Field a0 Fecals.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters.All parameters0.15All parameters0.33All parameters0.33Field a0 Fecals0.25Field a0 Fecals0.25All parameters0.29All parameters0.25Field only.All parameters0.25All parameters0.25Field a0 Fecals0.17Field a0 Fecals0.13All parameters0.25Field a0 Fecals0.17Field a0 Fecals0.25Field a0 Fecals0.25Field a0 Fecals0.25Field a0 Fecals0.21Field a0 Fecals0.21 <td>Code(ft)(ft)Area (ft2)All parametersAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersAll parameters0.33.24" pipeField a0 Fecals0.151.50All parameters0.25.36" pipeAll parameters0.25.00All parameters0.25.00All parameters0.251.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00Field a0 FecalsField a0 FecalsField a0 Fecals<</td> <td>Code(ft)(ft)Area (ft2)(fps)All parametersIIIAll parametersIIIAll parametersIIIAll parametersIIIField a0 FecalsIIIField a0 FecalsIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 Fecals0.151.500.23All parameters0.3324" pipe1.0Field a0 Fecals0.2536" pipe0.1All parameters0.2536" pipe0.1Field a0 Fecals0.251.000.25All parameters0.251.000.25All parameters0.251.000.25All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38<t< td=""><td>Code (ft) Area (ft2) (fps) Flow (cfs) All parameters All parameters Field a0 Fecals All parameters .</td></t<></td>	Code(ft)(ft)Area (ft2)All parametersAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersField a0 FecalsAll parametersAll parameters0.33.24" pipeField a0 Fecals0.151.50All parameters0.25.36" pipeAll parameters0.25.00All parameters0.25.00All parameters0.251.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00All parameters0.25.00Field a0 FecalsField a0 FecalsField a0 Fecals<	Code(ft)(ft)Area (ft2)(fps)All parametersIIIAll parametersIIIAll parametersIIIAll parametersIIIField a0 FecalsIIIField a0 FecalsIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 FecalsIIIAll parametersIIIField a0 Fecals0.151.500.23All parameters0.3324" pipe1.0Field a0 Fecals0.2536" pipe0.1All parameters0.2536" pipe0.1Field a0 Fecals0.251.000.25All parameters0.251.000.25All parameters0.251.000.25All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38All parameters0.251.500.38All parameters0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38Field a0 Fecals0.251.500.38 <t< td=""><td>Code (ft) Area (ft2) (fps) Flow (cfs) All parameters All parameters Field a0 Fecals All parameters .</td></t<>	Code (ft) Area (ft2) (fps) Flow (cfs) All parameters All parameters Field a0 Fecals All parameters .

Lake Whatcom North Shore On-Site Sewage System Leachate Detection Project Database

430	Field a0 Fecals	.15/.1		8"/12" pipe	5/3	0.5	photo	
430	All parameters					0.5	photo	
430	All parameters					0.5	photo	
429	Field a0 Fecals	0.05	0.50	0.03	1.5	0.04	photo	